On embedings of the free group into the group of infinite unitriangular matrices
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 55-58
Voir la notice de l'article provenant de la source Math-Net.Ru
With the help of the ping-pong lemma we prove that some 2-generated subgroups of the group of infinite unitriangular integer matrices are tree. Some of these examples are similar to the celebrated examples by W. Hołubowski (2003).
@article{ZNSL_2019_484_a3,
author = {A. I. Generalov and A. S. Mironov},
title = {On embedings of the free group into the group of infinite unitriangular matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--58},
publisher = {mathdoc},
volume = {484},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a3/}
}
TY - JOUR AU - A. I. Generalov AU - A. S. Mironov TI - On embedings of the free group into the group of infinite unitriangular matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 55 EP - 58 VL - 484 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a3/ LA - ru ID - ZNSL_2019_484_a3 ER -
A. I. Generalov; A. S. Mironov. On embedings of the free group into the group of infinite unitriangular matrices. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 55-58. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a3/