Orbits of vectors in some representations
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 149-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Phi$ be a root system of type $E_6$, $E_7$, or $E_8$. Let $K$ be a field of characteristic not $2$. Let $\delta$ be the maximal root of $\Phi$ and set $\Phi_0 = \{\alpha\in\Phi; \delta\perp\alpha\}$. We describe orbits of the group $G_{\mathrm{sc}}(\Phi_0, K)$ acting on the set $\langle e_\alpha; \angle(\alpha, \delta) = \pi/3\rangle$.
@article{ZNSL_2019_484_a10,
     author = {I. M. Pevzner},
     title = {Orbits of vectors in some representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--164},
     year = {2019},
     volume = {484},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Orbits of vectors in some representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 149
EP  - 164
VL  - 484
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/
LA  - ru
ID  - ZNSL_2019_484_a10
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Orbits of vectors in some representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 149-164
%V 484
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/
%G ru
%F ZNSL_2019_484_a10
I. M. Pevzner. Orbits of vectors in some representations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 149-164. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/

[1] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59

[2] N. Burbaki, Gruppy i algebry Li. Glavy IV–VI, Mir, M., 1972 | MR

[3] N. Burbaki, Gruppy i algebry Li. Glavy VII–VIII, Mir, M., 1978 | MR

[4] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $E_7$”, Algebra i analiz, 27:6 (2015), 57–88 | MR

[5] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm{E}_6$ v $27$-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[6] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83

[7] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye tory v gruppakh Shevalle”, Algebra i analiz, 24:3 (2012), 22–83

[8] A. Yu. Luzgarev, I. M. Pevzner, “Nekotorye fakty iz zhizni $\mathrm{GL}(5,\mathbb{Z})$”, Zap. nauchn. semin. POMI, 305, 2003, 153–163

[9] O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167

[10] O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[11] I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm{E}_6$”, Algebra i analiz, 23:3 (2011), 261–309

[12] I. M. Pevzner, “Shirina grupp tipa $\mathrm{E}_{6}$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 23:5 (2011), 155–198

[13] I. M. Pevzner, “Shirina grupp tipa $\mathrm{E}_{6}$ otnositelno mnozhestva kornevykh elementov, II”, Zap. nauchn. semin. POMI, 386, 2011, 242–264

[14] I. M. Pevzner, “Shirina gruppy $\mathrm{GL}(6,K)$ otnositelno mnozhestva kvazikornevykh elementov”, Zap. nauchn. semin. POMI, 423, 2014, 183–204

[15] I. M. Pevzner, “Shirina ekstraspetsialnogo unipotentnogo radikala otnositelno mnozhestva kornevykh elementov”, Zap. nauchn. semin. POMI, 435, 2015, 168–177

[16] I. M. Pevzner, “Suschestvovanie kornevoi podgruppy, kotoruyu dannyi element perevodit v protivopolozhnuyu”, Zap. nauchn. semin. POMI, 460, 2017, 190–202

[17] T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136

[18] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975

[19] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980

[20] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[21] M. Aschbacher, “The $27$-dimensional module for $E_6$. I”, Invent. Math., 89:1 (1987), 159–195 | DOI | MR

[22] M. Aschbacher, “The $27$-dimensional module for $E_6$. II”, J. London Math. Soc., 37 (1988), 275–293 | DOI | MR | Zbl

[23] M. Aschbacher, “The $27$-dimensional module for $E_6$. III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 | MR | Zbl

[24] M. Aschbacher, “The $27$-dimensional module for $E_6$. IV”, J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl

[25] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[26] M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, Oxford, 1990, 75–84 | MR

[27] B. N. Cooperstein, “The fifty-six-dimensional module for $E_7$. I, A four form for $E_7$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl

[28] S. Krutelevich, “Jordan algebras, exceptional groups, and Bhargava composition”, J. Algebra, 314:2 (2007), 924–977 | DOI | MR | Zbl

[29] T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 | MR | Zbl

[30] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 204 (2000), 1–45 | MR

[31] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR