Orbits of vectors in some representations
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 149-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a root system of type $E_6$, $E_7$, or $E_8$. Let $K$ be a field of characteristic not $2$. Let $\delta$ be the maximal root of $\Phi$ and set $\Phi_0 = \{\alpha\in\Phi; \delta\perp\alpha\}$. We describe orbits of the group $G_{\mathrm{sc}}(\Phi_0, K)$ acting on the set $\langle e_\alpha; \angle(\alpha, \delta) = \pi/3\rangle$.
@article{ZNSL_2019_484_a10,
     author = {I. M. Pevzner},
     title = {Orbits of vectors in some representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--164},
     publisher = {mathdoc},
     volume = {484},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Orbits of vectors in some representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 149
EP  - 164
VL  - 484
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/
LA  - ru
ID  - ZNSL_2019_484_a10
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Orbits of vectors in some representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 149-164
%V 484
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/
%G ru
%F ZNSL_2019_484_a10
I. M. Pevzner. Orbits of vectors in some representations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 149-164. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a10/