@article{ZNSL_2019_484_a0,
author = {N. Vavilov},
title = {Towards the reverse decomposition of unipotents. {II.} {The} relative case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--22},
year = {2019},
volume = {484},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/}
}
N. Vavilov. Towards the reverse decomposition of unipotents. II. The relative case. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/
[1] A. Bak, “Subgroups of the general linear group normalized by relative elementary subgroup”, Algebraic $K$-theory (Oberwolfach, 1980), v. II, Lecture Notes Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR
[2] A. Bak, “Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability”, $K$-Theory, 4:1991, 363–397 | MR | Zbl
[3] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[4] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR
[5] H. Bass, “Unitary algebraic K-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl
[6] Z. I. Borewicz, N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring, containing the group of diagonal matrices”, Proc. Steklov. Inst. Math., 148 (1980), 41–54 | MR
[7] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the general linear group over a commutative ring”, Proc. Steklov. Inst. Math., 183 (1985), 27–46 | MR
[8] J. L. Brenner, “The linear homogeneous group. III”, Ann. of Math., 71 (1960), 210–223 | DOI | MR | Zbl
[9] G. Habdank, Mixed commutator groups in classical groups and a classification of subgroups of classical groups normalized by relative elementary groups, Doktorarbeit, Uni. Bielefeld, 1987, 71 pp. | MR
[10] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary groups”, Adv. Math., 110 (1995), 191–233 | DOI | MR | Zbl
[11] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al, 1989 | MR
[12] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., New York, 222:4 (2017), 466–515 | DOI | MR | Zbl
[14] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[15] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $K$-Theory, 1 (1987), 171–184 | DOI | MR
[16] R. Preusser, “Structure of hyperbolic unitary groups II. Classification of $E$-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl
[17] R. Preusser, “Sandwich classification for $\mathrm{GL}_n(R)$, $O_{2n}(R)$ and $U_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21:1 (2018), 21–44 | DOI | MR | Zbl
[18] R. Preusser, “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl
[19] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[20] A. V. Stepanov, “A new look at the decomposition of unipotents and the normal structure of Chevalley groups”, St. Petersburg J. Math., 28:3 (2017), 411–419 | DOI | MR | Zbl
[21] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[22] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring” (Evanston, 1980), Algebraic $\mathrm{K}$-Theory, Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[23] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 425–431 | DOI | MR | Zbl
[24] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl
[25] L. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105 (1995), 93–106 | DOI | MR
[26] N. Vavilov, “Subnormal structure of general linear group”, Math. Proc. Cambridge Phil. Soc., 107 (1990), 103–106 | DOI | MR
[27] N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Zap. Nauchn. Semin. POMI, 470, 2018, 21–37 | MR
[28] N. A. Vavilov, “Unrelativised standard commutator formula”, Zap. Nauch. Semin. POMI, 470, 2018, 38–49 | MR
[29] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., Ser. 1, 41:1 (2008), 5–8 | MR | Zbl
[30] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., Ser. 1, 43:1 (2010), 12–17 | MR | Zbl
[31] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Camb. Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl
[32] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra, 216 (2012), 1040–1051 | DOI | MR | Zbl
[33] Hong You, Xuemei Zhou, “Subnormal structure of classical groups over Banach algebra”, J. Algebra, 357 (2012), 222–230 | DOI | MR | Zbl
[34] Zuhong Zhang, Lower $K$-theory of unitary groups, Ph. D. thesis, Univ. Belfast, 2007, 67 pp.
[35] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Proc. Cambridge Phil. Soc., 143 (2007), 607–619 | DOI | MR | Zbl
[36] Zuhong Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214:5 (2010), 622–628 | DOI | MR | Zbl