Towards the reverse decomposition of unipotents. II. The relative case
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Recently Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In [27] I discussed various generalisations of these results to exceptional groups, specifically those of types $\mathrm{E}_6$ and $\mathrm{E}_7$. Here, I produce a further variation of Preusser's wonderful idea. Namely, in the case of $\mathrm{GL}(n,R)$, $n\ge 4$, I obtain similar expressions of elementary transvections as conjugates of $g\in\mathrm{GL}(n,R)$ and $g^{-1}$ by relative elementary matrices $x\in E(n,J)$ and then $x\in E(n,R,J)$, for an ideal $J\unlhd R$. Again, in particular, this allows to give very short proofs for the description of subgroups normalised by $E(n,J)$ or $E(n,R,J)$ – and thus also of subnormal subgroups in $\mathrm{GL}(n,R)$.
@article{ZNSL_2019_484_a0,
     author = {N. Vavilov},
     title = {Towards the reverse decomposition of unipotents. {II.} {The} relative case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--22},
     year = {2019},
     volume = {484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/}
}
TY  - JOUR
AU  - N. Vavilov
TI  - Towards the reverse decomposition of unipotents. II. The relative case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 22
VL  - 484
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/
LA  - en
ID  - ZNSL_2019_484_a0
ER  - 
%0 Journal Article
%A N. Vavilov
%T Towards the reverse decomposition of unipotents. II. The relative case
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-22
%V 484
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/
%G en
%F ZNSL_2019_484_a0
N. Vavilov. Towards the reverse decomposition of unipotents. II. The relative case. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a0/

[1] A. Bak, “Subgroups of the general linear group normalized by relative elementary subgroup”, Algebraic $K$-theory (Oberwolfach, 1980), v. II, Lecture Notes Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR

[2] A. Bak, “Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability”, $K$-Theory, 4:1991, 363–397 | MR | Zbl

[3] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[4] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR

[5] H. Bass, “Unitary algebraic K-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl

[6] Z. I. Borewicz, N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring, containing the group of diagonal matrices”, Proc. Steklov. Inst. Math., 148 (1980), 41–54 | MR

[7] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the general linear group over a commutative ring”, Proc. Steklov. Inst. Math., 183 (1985), 27–46 | MR

[8] J. L. Brenner, “The linear homogeneous group. III”, Ann. of Math., 71 (1960), 210–223 | DOI | MR | Zbl

[9] G. Habdank, Mixed commutator groups in classical groups and a classification of subgroups of classical groups normalized by relative elementary groups, Doktorarbeit, Uni. Bielefeld, 1987, 71 pp. | MR

[10] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary groups”, Adv. Math., 110 (1995), 191–233 | DOI | MR | Zbl

[11] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al, 1989 | MR

[12] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., New York, 222:4 (2017), 466–515 | DOI | MR | Zbl

[14] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[15] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $K$-Theory, 1 (1987), 171–184 | DOI | MR

[16] R. Preusser, “Structure of hyperbolic unitary groups II. Classification of $E$-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl

[17] R. Preusser, “Sandwich classification for $\mathrm{GL}_n(R)$, $O_{2n}(R)$ and $U_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21:1 (2018), 21–44 | DOI | MR | Zbl

[18] R. Preusser, “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl

[19] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[20] A. V. Stepanov, “A new look at the decomposition of unipotents and the normal structure of Chevalley groups”, St. Petersburg J. Math., 28:3 (2017), 411–419 | DOI | MR | Zbl

[21] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[22] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring” (Evanston, 1980), Algebraic $\mathrm{K}$-Theory, Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[23] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 425–431 | DOI | MR | Zbl

[24] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[25] L. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105 (1995), 93–106 | DOI | MR

[26] N. Vavilov, “Subnormal structure of general linear group”, Math. Proc. Cambridge Phil. Soc., 107 (1990), 103–106 | DOI | MR

[27] N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Zap. Nauchn. Semin. POMI, 470, 2018, 21–37 | MR

[28] N. A. Vavilov, “Unrelativised standard commutator formula”, Zap. Nauch. Semin. POMI, 470, 2018, 38–49 | MR

[29] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., Ser. 1, 41:1 (2008), 5–8 | MR | Zbl

[30] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., Ser. 1, 43:1 (2010), 12–17 | MR | Zbl

[31] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Camb. Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl

[32] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra, 216 (2012), 1040–1051 | DOI | MR | Zbl

[33] Hong You, Xuemei Zhou, “Subnormal structure of classical groups over Banach algebra”, J. Algebra, 357 (2012), 222–230 | DOI | MR | Zbl

[34] Zuhong Zhang, Lower $K$-theory of unitary groups, Ph. D. thesis, Univ. Belfast, 2007, 67 pp.

[35] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Proc. Cambridge Phil. Soc., 143 (2007), 607–619 | DOI | MR | Zbl

[36] Zuhong Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214:5 (2010), 622–628 | DOI | MR | Zbl