Scattering of low-frequency waves in infinite Kirchhoff plate
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 142-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a small frequency, scattering of waves propagating along a Kirchhoff plate in the shape of locally perturbed strip with traction-free edges is studied. An asymptotic analysis shows that both, bending and twisting, waves do not detect in main distortion of the straight edges, that is the transmission coefficient differs a little from one while other scattering coefficients become small. In other words, an effect similar to the Weinstein anomaly in an acoustic waveguide is observed. Asymptotic procedures are based on a detailed investigation of the spectrum of an auxiliary operator pencil and the corresponding stationary problem. Justification of the asymptotics is performed by means of the technique of weighted spaces with detached asymptotics.
@article{ZNSL_2019_483_a9,
     author = {S. A. Nazarov},
     title = {Scattering of low-frequency waves in infinite {Kirchhoff} plate},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--177},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Scattering of low-frequency waves in infinite Kirchhoff plate
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 142
EP  - 177
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/
LA  - ru
ID  - ZNSL_2019_483_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Scattering of low-frequency waves in infinite Kirchhoff plate
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 142-177
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/
%G ru
%F ZNSL_2019_483_a9
S. A. Nazarov. Scattering of low-frequency waves in infinite Kirchhoff plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 142-177. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/

[1] M. Sh. Birman, “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl

[2] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR

[3] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980

[4] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 19:3 (1999), 53–160 | MR

[5] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[6] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sovetskoe radio, M., 1966

[7] S. A. Nazarov, “Anomalii rasseyaniya v rezonatore vyshe porogov nepreryvnogo spektra”, Mat. sb., 206:6 (2015), 15–48 | DOI | Zbl

[8] A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, ZAMM, 96:10 (2016), 1245–1260 | DOI | MR

[9] S. A. Nazarov, “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160

[10] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[11] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i mat. fizika, 167:2 (2011), 239–262 | DOI

[12] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego pril., 47:3 (2013), 37–53 | DOI | MR | Zbl

[13] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[14] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovsk. matem. obschestva, 16, 1963, 219–292

[15] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, 16, Izd-vo SPbGU, SPb., 1997, 167–192

[16] S. A. Nazarov, “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauchn. semin. peterburg. otdeleniya matem. instituta RAN, 249, 1997, 212–230 | Zbl

[17] S. A. Nazarov, “Asimptotika sobstvennykh kolebanii dlinnoi dvumernoi plastiny Kirkhgofa s peremennym secheniem”, Matem. sbornik, 209:9 (2018), 35–86 | DOI | MR | Zbl

[18] S. A. Nazarov, “Energeticheskie usloviya izlucheniya Mandelshtama i vektor Umova–Pointinga v uprugikh volnovodakh”, Probl. matem. anal., 72, Novosibirsk, 2013, 101–146 | Zbl

[19] S. A. Nazarov, “Usloviya izlucheniya Umova–Mandelshtama v uprugikh periodicheskikh volnovodakh”, Matem. sb., 205:7 (2014), 43–72 | DOI | MR | Zbl

[20] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[21] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[22] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tipogr. Ulrikha i Shultse, Odessa, 1874

[23] L. I. Mandelshtam, Sb. trudov, v. 2, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Izd-vo AN SSSR, M., 1947

[24] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979

[25] S. A. Nazarov, “Beskonechnaya plastina Kirkhgofa na kompaktnom uprugom osnovanii mozhet imet skol ugodno maloe sobstvennoe chislo”, Dokl. RAN, 488:4 (2019), 360–364 | DOI

[26] A. N. Krylov, O raschete balok, lezhaschikh na uprugom osnovanii, Izd-vo AN SSSR, Leningrad, 1931

[27] M. Hetenyi, Beams on elastic foundation, University Press, Michigan, 1946

[28] М. Д. Ван Дайк, Методы возмущений в механике жидкостей, Мир, М., 1967 | MR

[29] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989