@article{ZNSL_2019_483_a9,
author = {S. A. Nazarov},
title = {Scattering of low-frequency waves in infinite {Kirchhoff} plate},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--177},
year = {2019},
volume = {483},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/}
}
S. A. Nazarov. Scattering of low-frequency waves in infinite Kirchhoff plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 142-177. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a9/
[1] M. Sh. Birman, “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl
[2] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR
[3] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980
[4] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 19:3 (1999), 53–160 | MR
[5] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[6] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sovetskoe radio, M., 1966
[7] S. A. Nazarov, “Anomalii rasseyaniya v rezonatore vyshe porogov nepreryvnogo spektra”, Mat. sb., 206:6 (2015), 15–48 | DOI | Zbl
[8] A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, ZAMM, 96:10 (2016), 1245–1260 | DOI | MR
[9] S. A. Nazarov, “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160
[10] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl
[11] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i mat. fizika, 167:2 (2011), 239–262 | DOI
[12] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego pril., 47:3 (2013), 37–53 | DOI | MR | Zbl
[13] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[14] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovsk. matem. obschestva, 16, 1963, 219–292
[15] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, 16, Izd-vo SPbGU, SPb., 1997, 167–192
[16] S. A. Nazarov, “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauchn. semin. peterburg. otdeleniya matem. instituta RAN, 249, 1997, 212–230 | Zbl
[17] S. A. Nazarov, “Asimptotika sobstvennykh kolebanii dlinnoi dvumernoi plastiny Kirkhgofa s peremennym secheniem”, Matem. sbornik, 209:9 (2018), 35–86 | DOI | MR | Zbl
[18] S. A. Nazarov, “Energeticheskie usloviya izlucheniya Mandelshtama i vektor Umova–Pointinga v uprugikh volnovodakh”, Probl. matem. anal., 72, Novosibirsk, 2013, 101–146 | Zbl
[19] S. A. Nazarov, “Usloviya izlucheniya Umova–Mandelshtama v uprugikh periodicheskikh volnovodakh”, Matem. sb., 205:7 (2014), 43–72 | DOI | MR | Zbl
[20] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[21] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[22] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tipogr. Ulrikha i Shultse, Odessa, 1874
[23] L. I. Mandelshtam, Sb. trudov, v. 2, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Izd-vo AN SSSR, M., 1947
[24] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979
[25] S. A. Nazarov, “Beskonechnaya plastina Kirkhgofa na kompaktnom uprugom osnovanii mozhet imet skol ugodno maloe sobstvennoe chislo”, Dokl. RAN, 488:4 (2019), 360–364 | DOI
[26] A. N. Krylov, O raschete balok, lezhaschikh na uprugom osnovanii, Izd-vo AN SSSR, Leningrad, 1931
[27] M. Hetenyi, Beams on elastic foundation, University Press, Michigan, 1946
[28] М. Д. Ван Дайк, Методы возмущений в механике жидкостей, Мир, М., 1967 | MR
[29] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989