Forward and inverse dynamic problems for finite Krein–Stieltjes string. Approximation of constant density by point masses
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 128-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Approximation of constant density by point masses. Inverse dynamic problem for dynamical system describing propagation of waves in a Krein string is considered. The forward initial-boundary value problem for this system is reduced to the integral equation. Then the important special case when the density of a string is defined by point masses distributed on a finite interval is studied. Krein type equations are derived, which can be used for recovering of unknown density. The problem of the approximation of constant density by point masses uniformly distributed on the interval and the effect of appearing of a finite speed of wave propagation in the dynamical system is discussed.
@article{ZNSL_2019_483_a8,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Forward and inverse dynamic problems for finite {Krein{\textendash}Stieltjes} string. {Approximation} of constant density by point masses},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--141},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a8/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Forward and inverse dynamic problems for finite Krein–Stieltjes string. Approximation of constant density by point masses
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 128
EP  - 141
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a8/
LA  - ru
ID  - ZNSL_2019_483_a8
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Forward and inverse dynamic problems for finite Krein–Stieltjes string. Approximation of constant density by point masses
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 128-141
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a8/
%G ru
%F ZNSL_2019_483_a8
A. S. Mikhailov; V. S. Mikhailov. Forward and inverse dynamic problems for finite Krein–Stieltjes string. Approximation of constant density by point masses. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 128-141. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a8/

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh, 1965 | MR | Zbl

[2] F. V. Atkinson, Discrete and continuous boundary problems, Acad. Press, 1964 | MR | Zbl

[3] S. A. Avdonin, J. Edward, “Exact controllability for string with attached masses”, SIAM J. Control Optim., 56:2 (2017), 945–980 | DOI | MR

[4] S. A. Avdonin, V. S. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 19 pp. | DOI | MR

[5] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[6] M. I. Belishev, “Boundary control and inverse problems: a one-dimensional version of the boundary control method”, J. Math. Sci., 155:3 (2008), 343–378 | DOI | MR | Zbl

[7] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Russian Mathematical Surveys, 72:4 (2017), 581–644 | DOI | MR | Zbl

[8] M. I. Belishev, V. S. Mikhaylov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[9] A. S. Blagoveschenskii, “On a local approach to the solution of the dynamical inverse problem for an inhomogeneous string”, Trudy MIAN, 115, 1971, 28–38 | MR

[10] H. Dym, H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York etc, 1976 | MR | Zbl

[11] I. S. Kac, M. G. Krein, “On the spectral functions of the string”, Amer. Math. Soc. Transl. Ser. 2, 103 (1974), 19–102 | DOI | MR | Zbl

[12] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamical inverse problem for the discrete Schrödinger operator”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 842–854 | DOI

[13] A. S. Mikhaylov, V. S. Mikhaylov, “Boundary Control method and de Branges spaces. Schrödinger operator, Dirac system, discrete Schrödinger operator”, J. Math. Anal. Appl., 460:2 (2018), 927–953 | DOI | MR | Zbl

[14] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Problems and Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl

[15] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse dynamic problem for a Krein-Stieltjes string”, Applied Mathematics Letters, 96 (2019), 195–201 | DOI | MR | Zbl

[16] I. S. Gradshteyn, I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, Table of Integrals, Series, and Products, Translated by Scripta Technica, Inc., 3 ed., Academic Press, 1965 | MR

[17] M. Abramowitz, I. A. Stegun, Handbook Mathematical Functions, National Bureau of Stabdards Applied Mathematics Series, 55, June 1964 | MR