A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalues and eigenfunctions of the discrete spectrum for Robin Laplacians in an angle are constructively computed by means of the Sommerfeld integral and of the Malyuzhinets functional equations.
@article{ZNSL_2019_483_a7,
     author = {M. A. Lyalinov},
     title = {A comment on eigenvalues and eigenfunctions of {Laplace} operator in an angle with {Robin} boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--127},
     publisher = {mathdoc},
     volume = {483},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 116
EP  - 127
VL  - 483
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/
LA  - ru
ID  - ZNSL_2019_483_a7
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 116-127
%V 483
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/
%G ru
%F ZNSL_2019_483_a7
M. A. Lyalinov. A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/