@article{ZNSL_2019_483_a7,
author = {M. A. Lyalinov},
title = {A comment on eigenvalues and eigenfunctions of {Laplace} operator in an angle with {Robin} boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--127},
year = {2019},
volume = {483},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/}
}
TY - JOUR AU - M. A. Lyalinov TI - A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 116 EP - 127 VL - 483 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/ LA - ru ID - ZNSL_2019_483_a7 ER -
M. A. Lyalinov. A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/
[1] M. Khalile, K. Pankrashkin, “Eigenvalues of Robin Laplacians in infinite sectors”, Mathematische Nachrichten, 2018, 928–965 | DOI | MR | Zbl
[2] G. D. Maliuzhinets [Malyuzhinets], “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Physics: Doklady, 3:4 (1958), 752–755
[3] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008
[4] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[5] F. Ursell, “Waves on a sloping beach”, Proc. Royal Soc. London A, 214 (1952), 79–97 | DOI | MR | Zbl
[6] M. Roseau, “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11 A (1958), 433–493 | DOI | MR | Zbl