A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127
Voir la notice de l'article provenant de la source Math-Net.Ru
The eigenvalues and eigenfunctions of the discrete spectrum for Robin Laplacians in an angle are constructively computed by means of the Sommerfeld integral and of the Malyuzhinets functional equations.
@article{ZNSL_2019_483_a7,
author = {M. A. Lyalinov},
title = {A comment on eigenvalues and eigenfunctions of {Laplace} operator in an angle with {Robin} boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--127},
publisher = {mathdoc},
volume = {483},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/}
}
TY - JOUR AU - M. A. Lyalinov TI - A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 116 EP - 127 VL - 483 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/ LA - ru ID - ZNSL_2019_483_a7 ER -
M. A. Lyalinov. A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/