A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The eigenvalues and eigenfunctions of the discrete spectrum for Robin Laplacians in an angle are constructively computed by means of the Sommerfeld integral and of the Malyuzhinets functional equations.
@article{ZNSL_2019_483_a7,
     author = {M. A. Lyalinov},
     title = {A comment on eigenvalues and eigenfunctions of {Laplace} operator in an angle with {Robin} boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--127},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 116
EP  - 127
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/
LA  - ru
ID  - ZNSL_2019_483_a7
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 116-127
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/
%G ru
%F ZNSL_2019_483_a7
M. A. Lyalinov. A comment on eigenvalues and eigenfunctions of Laplace operator in an angle with Robin boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a7/

[1] M. Khalile, K. Pankrashkin, “Eigenvalues of Robin Laplacians in infinite sectors”, Mathematische Nachrichten, 2018, 928–965 | DOI | MR | Zbl

[2] G. D. Maliuzhinets [Malyuzhinets], “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Physics: Doklady, 3:4 (1958), 752–755

[3] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008

[4] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[5] F. Ursell, “Waves on a sloping beach”, Proc. Royal Soc. London A, 214 (1952), 79–97 | DOI | MR | Zbl

[6] M. Roseau, “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11 A (1958), 433–493 | DOI | MR | Zbl