Trapped modes in armchair graphene nanoribbons
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 85-115

Voir la notice de l'article provenant de la source Math-Net.Ru

We study scattering on an ultra-low potential in armchair graphene nanoribbon. Using the continuous Dirac model and including a couple of artificial waves in the scattering process, described by an augumented scattering matrix, we derive a condition for the existence of a trapped mode. We consider the threshold energies, where multiplicity of the continuous spectrum changes and show that a trapped mode may appear for energies slightly less than a threshold and its multiplicity does not exceed one. For energies which are higher than a threshold, there are no trapped modes, provided that the potential is sufficiently small.
@article{ZNSL_2019_483_a6,
     author = {V. A. Kozlov and S. A. Nazarov and A. Orlof},
     title = {Trapped modes in armchair graphene nanoribbons},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--115},
     publisher = {mathdoc},
     volume = {483},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
AU  - A. Orlof
TI  - Trapped modes in armchair graphene nanoribbons
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 85
EP  - 115
VL  - 483
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/
LA  - en
ID  - ZNSL_2019_483_a6
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%A A. Orlof
%T Trapped modes in armchair graphene nanoribbons
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 85-115
%V 483
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/
%G en
%F ZNSL_2019_483_a6
V. A. Kozlov; S. A. Nazarov; A. Orlof. Trapped modes in armchair graphene nanoribbons. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 85-115. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/