@article{ZNSL_2019_483_a6,
author = {V. A. Kozlov and S. A. Nazarov and A. Orlof},
title = {Trapped modes in armchair graphene nanoribbons},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--115},
year = {2019},
volume = {483},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/}
}
V. A. Kozlov; S. A. Nazarov; A. Orlof. Trapped modes in armchair graphene nanoribbons. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 85-115. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a6/
[1] T. Ando, T. Nakanishi, “Impurity Scattering in Carbon Nanotubes – Absence of Back Scattering”, J. Phys. Soc. Jpn., 67 (1998), 1704–1713 | DOI
[2] L. Brey, H. A. Fertig, “Electronic states of graphene nanoribbons studied with the Dirac equation”, Phys. Rev. B, 73 (2006), 235411 | DOI
[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys., 81 (2009), 109 | DOI
[4] Q. Chen, L. Ma, J. Wang, “Making graphene nanoribbons: a theoretical exploration”, WIREs Comput. Mol. Sci., 6:3 (2016), 243–254 | DOI
[5] I. V. Kamotskii, S. A. Nazarov, “An augmented scattering matrix and an exponentially decreasing solution of elliptic boundary-value problem in the domain with cylindrical outlets”, Zap. Nauchn. Sem. POMI, 264, 2000, 66–82 | MR | Zbl
[6] V. Kozlov, V. Maz'ya, Differential equations with operator coefficients with applications to boundary value problems for partial differential equations, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[7] V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes in zigzag graphene nanoribbons”, Z. Angew. Math. Phys., 68:4 (2017), 78, 31 pp. | DOI | MR | Zbl
[8] L. I. Mandelstam, Lectures on Optics, Relativity, and Quantum Mechanics, v. 2, AN SSSR, M., 1947 | MR
[9] P. Marconcini, M. Macucci, “The $k V\cdot p$ method and its application to graphene, carbon nanotubes and graphene nanoribbons: the Dirac equation”, La Rivista del Nuovo Cimento, 45:8–9 (2011), 489–584
[10] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbated quantum waveguide”, Theoretical and Mathematical Physics, 167:2 (2011), 239–262 | DOI | MR
[11] S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle”, Zh. Vychisl. Mat. i Mat. Fiz., 52:3 (2012), 521–538 | MR | Zbl
[12] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | MR | Zbl
[13] S. A. Nazarov, “Umov-Mandelstam radiation conditions in elastic periodic waveguides”, SB MATH, 205:7 (2014), 953–982 | DOI | MR | Zbl
[14] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306 (2004), 666 | DOI
[16] I. I. Vorovich, V. A. Babeshko, Dynamical mixed problems of elasticity theory for nonclassical domains, Nauka, M., 1979, 320 pp. | MR