Two-dimensional singular splash modes
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 79-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that a certain simple specification of the 2D Bateman-type complexified solution with a singularity at a running point satisfies the homogeneous wave equation, while the respective non-complexified function does not.
@article{ZNSL_2019_483_a5,
     author = {E. A. Zlobina and A. P. Kiselev},
     title = {Two-dimensional singular splash modes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--84},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a5/}
}
TY  - JOUR
AU  - E. A. Zlobina
AU  - A. P. Kiselev
TI  - Two-dimensional singular splash modes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 79
EP  - 84
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a5/
LA  - ru
ID  - ZNSL_2019_483_a5
ER  - 
%0 Journal Article
%A E. A. Zlobina
%A A. P. Kiselev
%T Two-dimensional singular splash modes
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 79-84
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a5/
%G ru
%F ZNSL_2019_483_a5
E. A. Zlobina; A. P. Kiselev. Two-dimensional singular splash modes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 79-84. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a5/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986

[2] A. S. Blagoveschenskii, A. P. Kiselev, “Dvumernye volny Beitmena-Khermandera s singulyarnostyu v beguschei tochke”, Matem. zametki, 106 (2019), 793–796 | DOI

[3] H. Bateman, “The conformal transformations of space of four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR

[4] A. P. Kiselev, M. V. Perel, “Otnositelno neiskazhayuschiesya resheniya mmernogo volnovogo uravneniya”, Differentsialnye uravneniya, 38 (2002), 1128–1129 | Zbl

[5] A. P. Kiselev, M. V. Plachenov, “Tochnye resheniya $m$-mernogo volnovogo uravneniya iz paraksialnykh. Dalneishee obobschenie resheniya Beitmena”, Zap. nauchn. semin. POMI, 393, 2011, 167–177

[6] R. W. Ziolkowski, “Localized transmission of electromagnetic energy”, Phys. Rev. A, 39 (1989), 2005–2011 | DOI | MR

[7] S. Feng, H. G. Winful, R. W. Hellwarth, “Spatiotemporal evolution of focused single-cycle electromagnetic pulses”, Phys. Rev. E, 59 (1999), 4630–4649 | DOI | MR

[8] A. S. Blagoveschenskii, A. P. Kiselev, A. M. Tagirdzhanov, “Prostye resheniya volnovogo uravneniya s singulyarnostyu v beguschei tochke, osnovannye na kompleksifitsirovannom reshenii Beitmena”, Zap. nauchn. semin. POMI, 438, 2015, 73–82

[9] A. P. Kiselev, M. P. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41 (2000), 1934–1955 | DOI | MR | Zbl