A nonstationary problem of diffraction of acoustic waves from a point source by an interface of two half-planes with positive effective curvature
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 69-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A nonstationary problem of diffraction of acoustic waves excited by a point source by an interface between two acoustic media with positive effective curvature is considered. This is a model problem for wave phenomena arising near the ocean bottom in the approximation of the “liquid bottom”. Using the complex analysis techniques, we proposed a method for finding the exact solution to the studied class of problems. We propose a method for constructing exact solutions in the form of an integral representation of the problem stated.
@article{ZNSL_2019_483_a4,
     author = {G. L. Zavorokhin and A. A. Matskovskiy},
     title = {A nonstationary problem of diffraction of acoustic waves from a point source by an interface of two half-planes with positive effective curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--78},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a4/}
}
TY  - JOUR
AU  - G. L. Zavorokhin
AU  - A. A. Matskovskiy
TI  - A nonstationary problem of diffraction of acoustic waves from a point source by an interface of two half-planes with positive effective curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 69
EP  - 78
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a4/
LA  - ru
ID  - ZNSL_2019_483_a4
ER  - 
%0 Journal Article
%A G. L. Zavorokhin
%A A. A. Matskovskiy
%T A nonstationary problem of diffraction of acoustic waves from a point source by an interface of two half-planes with positive effective curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 69-78
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a4/
%G ru
%F ZNSL_2019_483_a4
G. L. Zavorokhin; A. A. Matskovskiy. A nonstationary problem of diffraction of acoustic waves from a point source by an interface of two half-planes with positive effective curvature. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 69-78. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a4/

[1] V. S. Buldyrev, “Issledovanie funktsii Grina v zadache difraktsii na prozrachnom krugovom tsilindre. I”, Zh. vych. matem. i mat. fiziki, 4:4 (1964), 275–286 | MR | Zbl

[2] V. S. Buldyrev, A. I. Lanin, “Issledovanie funktsii Grina v zadache difraktsii na prozrachnom krugovom tsilindre. II”, Zh. vych. matem. i mat. fiziki, 6 (1966), 90–105

[3] V. S. Buldyrev, “Interferentsiya korotkikh voln v zadache difraktsii na neodnorodnom tsilindre proizvolnogo secheniya”, Izv. VUZ. Radiofizika, 10:5 (1967), 699–711

[4] V. M. Babich, “Boundary layer approach to describe an interference head wave”, Wave motion, 46 (2009), 169–173 | DOI | MR | Zbl

[5] V. M. Babich, “Pogransloinyi podkhod k opisaniyu golovnoi volny interferentsionnogo tipa”, Zap. nauchn. semin. POMI, 422, 2014, 18–26

[6] V. M. Babich, “On asymptotics of a wave field near the origin of an interference head wave”, Electromagnetics in Advanced Appl., 2007, 704–705

[7] A. A. Matskovskii, “Korotkovolnovyi tochechnyi istochnik kolebanii vblizi neodnorodnoi poluploskosti”, Zap. nauchn. semin. POMI, 409, 2012, 107–120

[8] A. A. Matskovskii, “O volnovykh frontakh golovnoi volny Buldyreva i voln shepchuschei galerei”, Zap. nauchn. semin. POMI, 426, 2014, 140–149

[9] A. A. Matskovskii, “Golovnaya volna interferentsionnogo tipa v zadache difraktsii voln tochechnogo istochnika na neodnorodnoi poluploskosti”, Zh. vychisl. matem. i matem. fiz., 55:11 (2015), 1904–1920 | DOI | MR

[10] V. M. Babich, A. A. Matskovskii, “Golovnaya volna interferentsionnogo tipa (volna Buldyreva) i soobrazheniya lokalnosti”, Zap. nauchn. sem. POMI, 438, 2015, 36–45

[11] M. V. Babich, V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer, Berlin–Heidelberg, 2011 | MR

[12] K. S. Knyazeva, A. V. Shanin, “Transient phenomena in a three-layer waveguide and the analytical structure of the dispersion diagram”, Wave Motion, 2017 (to appear) ; arXiv: 1704.00265 | Zbl