On an evolutionary dynamical system of the first order with boundary control
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is carried out as part of a program to construct a new functional (so-called wave) model of symmetric operators. It is shown that an abstract evolutionary dynamic system of the first order (w.r.t. time) with boundary control, which is determined by a symmetric operator $L_0:{\mathscr H}\to{\mathscr H}$, is controllable if and only if $L_0$ has no maximal symmetric parts in ${\mathscr H}$.
@article{ZNSL_2019_483_a2,
     author = {M. I. Belishev and S. A. Simonov},
     title = {On an evolutionary dynamical system of the first order with boundary control},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {483},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Simonov
TI  - On an evolutionary dynamical system of the first order with boundary control
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 41
EP  - 54
VL  - 483
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/
LA  - ru
ID  - ZNSL_2019_483_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Simonov
%T On an evolutionary dynamical system of the first order with boundary control
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 41-54
%V 483
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/
%G ru
%F ZNSL_2019_483_a2
M. I. Belishev; S. A. Simonov. On an evolutionary dynamical system of the first order with boundary control. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 41-54. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/