On an evolutionary dynamical system of the first order with boundary control
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 41-54
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is carried out as part of a program to construct a new functional (so-called wave) model of symmetric operators. It is shown that an abstract evolutionary dynamic system of the first order (w.r.t. time) with boundary control, which is determined by a symmetric operator $L_0:{\mathscr H}\to{\mathscr H}$, is controllable if and only if $L_0$ has no maximal symmetric parts in ${\mathscr H}$.
@article{ZNSL_2019_483_a2,
author = {M. I. Belishev and S. A. Simonov},
title = {On an evolutionary dynamical system of the first order with boundary control},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--54},
publisher = {mathdoc},
volume = {483},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/}
}
TY - JOUR AU - M. I. Belishev AU - S. A. Simonov TI - On an evolutionary dynamical system of the first order with boundary control JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 41 EP - 54 VL - 483 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/ LA - ru ID - ZNSL_2019_483_a2 ER -
M. I. Belishev; S. A. Simonov. On an evolutionary dynamical system of the first order with boundary control. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 41-54. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a2/