Relations between spheroidal harmonics and Rayleigh approximation for multilayered nonconfocal spheroids
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 199-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The relations between Laplace's spheroidal harmonics related to diffe-\break rent spheroidal coordinates are derived. The transition matrices for the functions of the 1st kind are lower triangular and related by inversion. The matrices for the functions of the 2nd kind are the transposed ones for the functions of the 1st kind. The series for the functions of the 1st kind are finite, and those for the 2nd kind are infinite. In the latter case the region of convergence is considered. Using the derived relations, the rigid solution to the electrostatic problem for the multi-layered scatterers with the non-confocal spheroidal boundaries of the layers is obtained and the Rayleigh approximation is constructed, as well as an approximate approach to a similar light scattering problem that provides reliable results far beyond the range of applicability of the Rayleigh approximation is suggested.
@article{ZNSL_2019_483_a12,
     author = {V. G. Farafonov and V. I. Ustimov and V. B. Il'in},
     title = {Relations between spheroidal harmonics and {Rayleigh} approximation for multilayered nonconfocal spheroids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--242},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a12/}
}
TY  - JOUR
AU  - V. G. Farafonov
AU  - V. I. Ustimov
AU  - V. B. Il'in
TI  - Relations between spheroidal harmonics and Rayleigh approximation for multilayered nonconfocal spheroids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 199
EP  - 242
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a12/
LA  - ru
ID  - ZNSL_2019_483_a12
ER  - 
%0 Journal Article
%A V. G. Farafonov
%A V. I. Ustimov
%A V. B. Il'in
%T Relations between spheroidal harmonics and Rayleigh approximation for multilayered nonconfocal spheroids
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 199-242
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a12/
%G ru
%F ZNSL_2019_483_a12
V. G. Farafonov; V. I. Ustimov; V. B. Il'in. Relations between spheroidal harmonics and Rayleigh approximation for multilayered nonconfocal spheroids. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 199-242. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a12/

[1] V. G. Farafonov, V. B. Ilin, V. I. Ustimov, A. R. Tulegenov, “Ob ellipsoidalnoi modeli dlya malykh nesfericheskikh chastits”, Opt. i spektr., 122 (2017), 506–516 | DOI

[2] V. G. Farafonov, V. B. Ilin, M. S. Prokopeva, A. R. Tulegenov, V. I. Ustimov, “O sferoidalnoi modeli rasseyaniya sveta nesfericheskimi chastitsami”, Opt. i spektr., 126 (2019), 443–449

[3] V. G. Farafonov, V. I. Ustimov, V. B. Ilin, M.V.Sokolovskaya, “Ellipsoidalnaya model dlya malykh mnogosloinykh chastits”, Opt. i spektr., 124 (2018), 241–249

[4] V. G. Farafonov, A. A. Vinokurov, S. V. Barkanov, “Elektrostaticheskoe reshenie i priblizhenie Releya dlya malykh nesfericheskikh chastits v sferoidalnom bazise”, Opt. i spektr., 111 (2011), 1026–1038

[5] V. G. Farafonov, M. V. Sokolovskaya, “Postroenie priblizheniya Releya dlya osesimmetrichnykh mnogosloinykh chastits s ispolzovaniem sobstvennykh funktsii operatora Laplasa”, Zap. nauchn. semin. POMI, 409, 2012, 187–211

[6] K. Boren, D. Khaffmen, Pogloschenie i rasseyanie sveta malymi chastitsami, Mir, M., 1986

[7] V. G. Farafonov, “Rasseyanie sveta mnogosloinymi ellipsoidami v releevskom priblizhenii”, Opt. i spektr., 88 (2000), 441–444

[8] V. G. Farafonov, V. B. Ilin, “O primenimosti sfericheskogo bazisa dlya sferoidalnykh sloistykh rasseivatelei”, Opt. i spektr., 115 (2013), 836–843 | DOI

[9] V. G. Farafonov, V. I. Ustimov, M. V. Sokolovskaya, “Uslovie primenimosti EVSM dlya malykh mnogosloinykh chastits”, Opt. i spektr., 120 (2016), 470–483 | DOI

[10] V. G. Farafonov, V. I. Ustimov, V. B. Ilin, “Rasseyanie sveta malymi mnogosloinymi nesofokusnymi sferoidami s ispolzovaniem podkhodyaschikh sferoidalnykh bazisov”, Opt. i spektr., 125 (2018), 786–794

[11] V. I. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976

[12] F. M. Morc, G. Feshbakh, Metody teoreticheskoi fiziki, IL, M., 1958

[13] G. Jansen, “Transformation properties of spheroidal multipole moments and potentials”, J. Phys. A: Math. Gen., 33 (2000), 1375–1394 | DOI | MR | Zbl

[14] V. A. Antonov, A. S. Baranov, “Svyaz mezhdu razlozheniyami vneshnego potentsiala po sharovym funktsiyam i sferoidalnym garmonikam”, Zh. tekhn. fiz., 72 (2002), 80–82

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1973

[16] V. G. Farafonov, “Gipoteza Releya i oblast primenimosti metoda rasshirennykh granichnykh uslovii v elektrostaticheskikh zadachakh dlya nesfericheskikh chastits”, Opt. i spektr., 117 (2014), 949–962 | DOI

[17] V. G. Farafonova, N. V. Voschinnikov, E. G. Semenova, “Nekotorye sootnosheniya mezhdu volnovymi sferoidalnymi i sfericheskimi funktsiyami”, Zap. nauchn. semin. POMI, 426, 2014, 203–217

[18] V. G. Farafonov, “Difraktsiya ploskoi elektromagnitnoi volny na dielektricheskom sferoide”, Differents. uravn., 19 (1983), 1765–1777 | MR

[19] V. V. Klimov, Nanoplazmonika, Fizmatlit, M., 2009

[20] G. van de Khyulst, Rasseyanie sveta malymi chastitsami, IIL, M., 1961

[21] V. G. Farafonov, V. I. Ustimov, “O svoistvakh $T$-matritsy v releevskom priblizhenii”, Opt. i spektr., 119 (2015), 1020–1032 | DOI

[22] V. G. Farafonov, V. I. Ustimov, “Rasseyanie sveta malymi mnogosloinymi chastitsami: obobschennyi metod razdeleniya peremennykh”, Opt. i spektr., 124 (2018), 255–263

[23] V. G. Farafonov, V. I. Ustimov, V. B. Ilin, “Priblizhenie Releya dlya mnogosloinykh nesofokusnykh sferoidov”, Opt. i spektr., 126 (2019), 450–457

[24] B. Posselt, V. G. Farafonov, V. B. Il'in, M. S. Prokopjeva, “Light scattering by multilayered ellipsoidal particles in the quasistatic approximation”, Meas. Sci. Technol., 13 (2002), 256–62 | DOI