@article{ZNSL_2019_483_a10,
author = {M. V. Perel},
title = {Quasiphotons for the nonstationary {2D} {Dirac} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--188},
year = {2019},
volume = {483},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/}
}
M. V. Perel. Quasiphotons for the nonstationary 2D Dirac equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 178-188. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/
[1] P. Carmier, D. Ullmo, “Berry phase in graphene: Semiclassical perspective”, Physical Review B, 77 (2008), 245413 | DOI
[2] V. V. Zalipaev, “Complex WKB approximations in graphene electron-hole waveguides in magnetic field”, Graphen–Synthesis, Characterization, Propeties and Applications, 2011, 81
[3] K. J. A. Reijnders, T. Tudorovskiy, M. I. Katsnelson, “Semiclassical theory of potential scattering for massless Dirac fermions”, Ann. Phys., 333 (2013), 155–197 | DOI
[4] V. V. Zalipaev, C. M. Linton, M. D. Croitoru, A. Vagov, “Resonant tunneling and localized states in a graphene monolayer with a mass gap”, Phys. Rev. B, 91:8 (2015), 085405, 15 pp. | DOI
[5] K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation”, Ann. Phys., 397 (2018), 65–135 | DOI | MR | Zbl
[6] V. V. Kuydin, M. V. Perel, “Gaussian beams for 2D Dirac equation with electromagnetic field”, DAYS on DIFFRACTION 2019
[7] V. M. Babich, V. C. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln: Metod. etalonnykh zadach, Nauka, M., 1972
[8] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravenii kvantovoi mekhaniki, Nauka, M., 1976
[9] V. M. Babich, V. C. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo Leningradskogo un-ta, L., 1985 | MR
[10] V. M. Babich, Yu. P. Danilov, “Postroenie asimptotiki resheniya uravneniya Shredingera, sosredotochennoi v okrestnosti klassicheskoi traektorii”, Zap. nauchn. semin. LOMI, 15, 1969, 47–65 | Zbl
[11] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i “kvazifotony””, Zap. nauchn. semin. LOMI, 117, 1981, 5–12 | Zbl
[12] J. Ralston, “Gaussian beams and the propagation of singularities”, Studies in partial differential equations, 23 (1982), 206–248 | MR
[13] A. P. Kachalov, “Sistema koordinat pri opisanii “kvazifotona””, Zap. nauchn. semin. LOMI, 140, 1984, 73–76 | MR | Zbl
[14] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Zap. nauchn. semin. POMI, 342, 2007, 5–13
[15] A. P. Kiselev, M. V. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl
[16] A. P. Kiselev, M. V. Perel, “Gaussovskie volnovye pakety”, Optika i spektroskopiya, 86:3 (1999), 357–359
[17] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. semin. LOMI, 104, 1981, 195–216 | Zbl
[18] M. V. Perel, M. S. Sidorenko, “New physical wavelet 'Gaussian wave packet”, J. Phys. A, 40:13 (2007), 3441 | DOI | MR | Zbl
[19] M. V. Perel, M. S. Sidorenko, “Wavelet-based integral representation for solutions of the wave equation”, J. Phys. A, 42:37 (2009), 375211 | DOI | MR | Zbl
[20] M. V. Perel, M. S. Sidorenko, “Wavelet analysis for the solutions of the wave equation”, DAYS on DIFFRACTION 2006, 208–217
[21] M. Perel, E. Gorodnitskiy, “Integral representations of solutions of the wave equation based on relativistic wavelets”, J. Phys. A, 45:38 (2012), 385203 | DOI | MR | Zbl
[22] E. Gorodnitskiy, M. Perel, Yu Geng, R. S. Wu, “Depth migration with Gaussian wave packets based on Poincaré wavelets”, Geophys. J. Int., 205:1 (2016), 314–331 | DOI