Quasiphotons for the nonstationary 2D Dirac equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 178-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The asymptotic expansions are obtained for the solution of the $ (2 + 1) $-dimensional nonstationary Dirac equation describing the wave function of a massive fermion in graphene, placed in an external inhomogeneous electric and magnetic field. The semiclassical asymptotics of the solution of the Cauchy problem for this equation with rapidly oscillating and rapidly decreasing initial data are found. This made it possible to find quasiphotons – asymptotic solutions describing Gaussian wave packets concentrated near a point running along a semiclassical trajectory.
@article{ZNSL_2019_483_a10,
     author = {M. V. Perel},
     title = {Quasiphotons for the nonstationary {2D} {Dirac} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--188},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/}
}
TY  - JOUR
AU  - M. V. Perel
TI  - Quasiphotons for the nonstationary 2D Dirac equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 178
EP  - 188
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/
LA  - ru
ID  - ZNSL_2019_483_a10
ER  - 
%0 Journal Article
%A M. V. Perel
%T Quasiphotons for the nonstationary 2D Dirac equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 178-188
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/
%G ru
%F ZNSL_2019_483_a10
M. V. Perel. Quasiphotons for the nonstationary 2D Dirac equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 178-188. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a10/

[1] P. Carmier, D. Ullmo, “Berry phase in graphene: Semiclassical perspective”, Physical Review B, 77 (2008), 245413 | DOI

[2] V. V. Zalipaev, “Complex WKB approximations in graphene electron-hole waveguides in magnetic field”, Graphen–Synthesis, Characterization, Propeties and Applications, 2011, 81

[3] K. J. A. Reijnders, T. Tudorovskiy, M. I. Katsnelson, “Semiclassical theory of potential scattering for massless Dirac fermions”, Ann. Phys., 333 (2013), 155–197 | DOI

[4] V. V. Zalipaev, C. M. Linton, M. D. Croitoru, A. Vagov, “Resonant tunneling and localized states in a graphene monolayer with a mass gap”, Phys. Rev. B, 91:8 (2015), 085405, 15 pp. | DOI

[5] K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation”, Ann. Phys., 397 (2018), 65–135 | DOI | MR | Zbl

[6] V. V. Kuydin, M. V. Perel, “Gaussian beams for 2D Dirac equation with electromagnetic field”, DAYS on DIFFRACTION 2019

[7] V. M. Babich, V. C. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln: Metod. etalonnykh zadach, Nauka, M., 1972

[8] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravenii kvantovoi mekhaniki, Nauka, M., 1976

[9] V. M. Babich, V. C. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo Leningradskogo un-ta, L., 1985 | MR

[10] V. M. Babich, Yu. P. Danilov, “Postroenie asimptotiki resheniya uravneniya Shredingera, sosredotochennoi v okrestnosti klassicheskoi traektorii”, Zap. nauchn. semin. LOMI, 15, 1969, 47–65 | Zbl

[11] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i “kvazifotony””, Zap. nauchn. semin. LOMI, 117, 1981, 5–12 | Zbl

[12] J. Ralston, “Gaussian beams and the propagation of singularities”, Studies in partial differential equations, 23 (1982), 206–248 | MR

[13] A. P. Kachalov, “Sistema koordinat pri opisanii “kvazifotona””, Zap. nauchn. semin. LOMI, 140, 1984, 73–76 | MR | Zbl

[14] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Zap. nauchn. semin. POMI, 342, 2007, 5–13

[15] A. P. Kiselev, M. V. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl

[16] A. P. Kiselev, M. V. Perel, “Gaussovskie volnovye pakety”, Optika i spektroskopiya, 86:3 (1999), 357–359

[17] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. semin. LOMI, 104, 1981, 195–216 | Zbl

[18] M. V. Perel, M. S. Sidorenko, “New physical wavelet 'Gaussian wave packet”, J. Phys. A, 40:13 (2007), 3441 | DOI | MR | Zbl

[19] M. V. Perel, M. S. Sidorenko, “Wavelet-based integral representation for solutions of the wave equation”, J. Phys. A, 42:37 (2009), 375211 | DOI | MR | Zbl

[20] M. V. Perel, M. S. Sidorenko, “Wavelet analysis for the solutions of the wave equation”, DAYS on DIFFRACTION 2006, 208–217

[21] M. Perel, E. Gorodnitskiy, “Integral representations of solutions of the wave equation based on relativistic wavelets”, J. Phys. A, 45:38 (2012), 385203 | DOI | MR | Zbl

[22] E. Gorodnitskiy, M. Perel, Yu Geng, R. S. Wu, “Depth migration with Gaussian wave packets based on Poincaré wavelets”, Geophys. J. Int., 205:1 (2016), 314–331 | DOI