Simplest test for three-dimensional dynamical inverse problem (the BC-method)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 19-40

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical system \begin{align*} {tt}-\Delta u-\nabla \ln \rho \cdot \nabla u = 0 \text{in}\quad {\mathbb R^3_+} \times (0,T), \\ |_{t=0} = u_t|_{t=0}=0 \text{in}\quad \overline{\mathbb R^3_+},\\ |_{z=0}=f \text{for}\quad 0\leqslant t\leqslant T, \end{align*} is under consideration, where $\rho=\rho(x,y,z)$ is a smooth positive function; $f=f(x,y,t)$ is a boundary control; $u=u^f(x,y,z,t)$ is a solution. With the system one associates a response operator $R: f \mapsto u^f|_{z=0}$. The inverse problem is to recover the function $\rho$ via the response operator. The short presentation of the local version of the BC-method, which recovers $\rho$ via the data given on a part of the boundary, is provided. If $\rho$ is constant, the forward problem is solved in explicit form. In the paper, the corresponding representations for the solutions and response operator are derived. The way to use them for testing the BC-algorithm, which solves the inverse problem, is outlined. The goal of the paper is to extend the circle of the BC-method users, who are interested in numerical realization of methods for solving inverse problems.
@article{ZNSL_2019_483_a1,
     author = {M. I. Belishev and A. S. Blagoveshchensky and N. A. Karazeeva},
     title = {Simplest test for three-dimensional dynamical inverse problem (the {BC-method)}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--40},
     publisher = {mathdoc},
     volume = {483},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. S. Blagoveshchensky
AU  - N. A. Karazeeva
TI  - Simplest test for three-dimensional dynamical inverse problem (the BC-method)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 19
EP  - 40
VL  - 483
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a1/
LA  - ru
ID  - ZNSL_2019_483_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. S. Blagoveshchensky
%A N. A. Karazeeva
%T Simplest test for three-dimensional dynamical inverse problem (the BC-method)
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 19-40
%V 483
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a1/
%G ru
%F ZNSL_2019_483_a1
M. I. Belishev; A. S. Blagoveshchensky; N. A. Karazeeva. Simplest test for three-dimensional dynamical inverse problem (the BC-method). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 19-40. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a1/