The scattering problem of three one-dimensional short-range quantum particles involving bound states in pair subsystems. The coordinate asymptotics of the resolvent kernel and absolutely continuous spectrum eigenfunctions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the work the scattering problem of three one-dimensional quantum particles of equal masses interacting by pair finite potentials is considered. The potentials structure allows bound states in the corresponding pair subsystems. The limit values of the Schroedinger operator resolvent kernel are studied, when the spectral parameter sits onto the absolutely continuous spectrum – the positive semi-axis. As a result, the coordinate asymptotics of the absolutely continuous spectrum eigenfunctions are constructed.
@article{ZNSL_2019_483_a0,
     author = {I. V. Baibulov and A. M. Budylin and S. B. Levin},
     title = {The scattering problem of three one-dimensional short-range quantum particles involving bound states in pair subsystems. {The} coordinate asymptotics of the resolvent kernel and absolutely continuous spectrum eigenfunctions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     year = {2019},
     volume = {483},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a0/}
}
TY  - JOUR
AU  - I. V. Baibulov
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - The scattering problem of three one-dimensional short-range quantum particles involving bound states in pair subsystems. The coordinate asymptotics of the resolvent kernel and absolutely continuous spectrum eigenfunctions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 18
VL  - 483
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a0/
LA  - ru
ID  - ZNSL_2019_483_a0
ER  - 
%0 Journal Article
%A I. V. Baibulov
%A A. M. Budylin
%A S. B. Levin
%T The scattering problem of three one-dimensional short-range quantum particles involving bound states in pair subsystems. The coordinate asymptotics of the resolvent kernel and absolutely continuous spectrum eigenfunctions
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-18
%V 483
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a0/
%G ru
%F ZNSL_2019_483_a0
I. V. Baibulov; A. M. Budylin; S. B. Levin. The scattering problem of three one-dimensional short-range quantum particles involving bound states in pair subsystems. The coordinate asymptotics of the resolvent kernel and absolutely continuous spectrum eigenfunctions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 49, Tome 483 (2019), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2019_483_a0/

[1] E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math.Phys., 78 (1981), 391–408 | DOI | MR | Zbl

[2] L. D. Faddeev, “Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits”, Tr. MIAN SSSR, 69, 1963, 3–122

[3] I. V. Baibulov, A. M. Budylin, S. B. Levin, “Zadacha rasseyaniya neskolkikh odnomernykh kvantovykh chastits. Struktura i asimptotika predelnykh znachenii yadra rezolventy”, Zap. nauchn. semin. POMI, 461, 2017, 14–51

[4] I. V. Baibulov, A. M. Budylin, S. B. Levin, “Asimptotika sobstvennykh funktsii absolyutno nepreryvnogo spektra zadachi rasseyaniya trekh odnomernykh kvantovykh chastits”, Zap. nauchn. semin. POMI, 471, 2018, 15–37

[5] A. M. Budylin, V. S. Buslaev, “Reflection operator and their applications to asymptotic investigations of semiclassical integral equations”, Adv. Soviet Math., 7 (1991), 107–157 | MR | Zbl