Iterative solution of saddle-point SLAEs
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 135-150
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations (SLAEs) with a saddle point arising from grid approximations of three dimensional boundary-value problems of various types describing filtration flows of a two-phase incompressible fluid. A comparative analysis of up-to-date approaches to block preconditioning of SLAEs under consideration, including issues of scalable parallelization of algorithms on multiprocessor computing systems with distributed and hierarchical shared memory using hybrid programming tools, is presented. A regularized Uzawa algorithm using a two-level iterative process is proposed. Results of numerical experiments for the Dirichlet and Neumann model boundary-value problems are provided and discussed.
@article{ZNSL_2019_482_a9,
     author = {V. P. Il'in and G. Yu. Kazantsev},
     title = {Iterative solution of saddle-point {SLAEs}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--150},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a9/}
}
TY  - JOUR
AU  - V. P. Il'in
AU  - G. Yu. Kazantsev
TI  - Iterative solution of saddle-point SLAEs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 135
EP  - 150
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a9/
LA  - ru
ID  - ZNSL_2019_482_a9
ER  - 
%0 Journal Article
%A V. P. Il'in
%A G. Yu. Kazantsev
%T Iterative solution of saddle-point SLAEs
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 135-150
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a9/
%G ru
%F ZNSL_2019_482_a9
V. P. Il'in; G. Yu. Kazantsev. Iterative solution of saddle-point SLAEs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 135-150. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a9/

[1] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, izd. SO RAN, Novosibirsk, 2017

[2] M. I. Ivanov, I. A. Kremer, Yu. M. Laevskii, “Ob odnoi protivopotokovoi skheme resheniya zadachi filtratsii”, Sib. elektron. mat. izv., 16 (2019), 757–776 | Zbl

[3] M. Benzi, G. H. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numer., 14 (2005), 1–137 | DOI | MR | Zbl

[4] Yu. V. Bychenkov, E. V. Chizhonkov, Iteratsionnye metody resheniya sedlovykh zadach, BINOM. Laboratoriya znanii, M., 2010

[5] Y. Notay, “Convergence of some iterative methods for symmetric saddle point linear systems”, Matrix Anal. Appl. SIAM, 40:1 (2018), 122–146 | DOI | MR

[6] R. Estrin, C. Greif, “SPMR: A family of saddle-point minimum residual solvers”, SIAM J. Sci. Comput., 40:3 (2018), 1884–1914 | DOI | MR

[7] C. Greif, M. Wathen, “Conjugate gradient for nonsingular saddle-point systems with a maximally rank-deficient leading block”, J. Comput. Appl. Math., 358 (2019), 1–11 | DOI | MR | Zbl

[8] P. E. Popov, A. A. Kalinkin, “The method of separation of variables in a problem with a saddle point”, Russ. J. Numer. Anal. Math. Model., 23:1 (2008), 97–106 | DOI | MR | Zbl

[9] V. P. Ilin, “O problemakh parallelnogo resheniya bolshikh SLAU”, Zap. nauchn. semin. POMI, 439, 2015, 112–127

[10] V. P. ll'in, “On an integrated computational environment for numerical algebra”, Proc. PCT 2019, CCIS, 1063, eds. L. Sokolinsky, M. Zymbler, Springer Nature Switzerland AG, 2019, 91–106

[11] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007

[12] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1958 | MR

[13] Ya. L. Gureva, V. P. Ilin, “O metodakh grubosetochnoi korrektsii v podprostranstvakh Krylova”, Zap. nauchn. semin. POMI, 463, 2017, 44–57

[14] V. P. Il'in, “Multi-Preconditioned Domain Decomposition Methods in the Krylov Subspaces”, LNCS, 10187, 2017, 95–106 | MR | Zbl

[15] Reference Manual, , Intel Math Kernel Library http://software.intel.com/sites/products/documentation/hpc/composerxe/enus/mklxe/mk-manual-win-mac/index.html