Congruence criteria for normal and conjugate-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 129-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Complex $n\times n$ matrices $A$ and $B$ are said to be $T$-congruent if $B = S^T AS$ and $*$-congruent if $B = S^* AS$, where $S$ is an arbitrary nonsingular matrix. For several facts related to normal matrices and $*$-congruences, analogs in the theory of $T$-congruences, concerning conjugate-normal matrices, are found.
@article{ZNSL_2019_482_a8,
     author = {Kh. D. Ikramov},
     title = {Congruence criteria for normal and conjugate-normal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Congruence criteria for normal and conjugate-normal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 129
EP  - 134
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/
LA  - ru
ID  - ZNSL_2019_482_a8
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Congruence criteria for normal and conjugate-normal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 129-134
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/
%G ru
%F ZNSL_2019_482_a8
Kh. D. Ikramov. Congruence criteria for normal and conjugate-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 129-134. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/