Congruence criteria for normal and conjugate-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 129-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Complex $n\times n$ matrices $A$ and $B$ are said to be $T$-congruent if $B = S^T AS$ and $*$-congruent if $B = S^* AS$, where $S$ is an arbitrary nonsingular matrix. For several facts related to normal matrices and $*$-congruences, analogs in the theory of $T$-congruences, concerning conjugate-normal matrices, are found.
@article{ZNSL_2019_482_a8,
     author = {Kh. D. Ikramov},
     title = {Congruence criteria for normal and conjugate-normal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--134},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Congruence criteria for normal and conjugate-normal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 129
EP  - 134
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/
LA  - ru
ID  - ZNSL_2019_482_a8
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Congruence criteria for normal and conjugate-normal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 129-134
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/
%G ru
%F ZNSL_2019_482_a8
Kh. D. Ikramov. Congruence criteria for normal and conjugate-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 129-134. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a8/

[1] R. A. Horn, V. V. Sergeichuk, “A regularization algorithm for matrices of bilinear and sesquilinear forms”, Linear Algebra Appl., 412 (2006), 380–395 | DOI | MR | Zbl

[2] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zh. vychisl. matem., 21:3 (2018), 255–258 | MR | Zbl

[3] C. R. Johnson, S. Furtado, “A generalization of Sylvester's law of inertia”, Linear Algebra Appl., 338 (2001), 287–290 | DOI | MR | Zbl

[4] Kh. D. Ikramov, “O zakone inertsii dlya normalnykh matrits”, Dokl. RAN, 380 (2001), 7–8 | Zbl

[5] H. Fassbender, Kh. D. Ikramov, “Conjugate-normal matrices: A survey”, Linear Algebra Appl., 429 (2008), 1425–1441 | DOI | MR | Zbl

[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge Univ. Press, 2013 | MR | Zbl