Rationally verifiable necessary conditions for Hermitian congruence of complex matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 120-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A finite computational process using arithmetic operations only is called a rational algorithm. Matrices $A$ and $F$ are said to be Hermitian congruent if $F = Q^*AQ$ for a nonsingular matrix $Q$. The paper gives a survey of necessary conditions for Hermitian congruence verifiable by rational algorithms.
@article{ZNSL_2019_482_a7,
     author = {Kh. D. Ikramov},
     title = {Rationally verifiable necessary conditions for {Hermitian} congruence of complex matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--128},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Rationally verifiable necessary conditions for Hermitian congruence of complex matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 120
EP  - 128
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/
LA  - ru
ID  - ZNSL_2019_482_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Rationally verifiable necessary conditions for Hermitian congruence of complex matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 120-128
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/
%G ru
%F ZNSL_2019_482_a7
Kh. D. Ikramov. Rationally verifiable necessary conditions for Hermitian congruence of complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 120-128. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/

[1] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69

[2] Kh. D. Ikramov, “O proverke kongruentnosti akkretivnykh matrits”, Mat. zametki, 101 (2017), 854–859 | DOI | Zbl

[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for unitary congruence and *congruence”, Linear Multilinear Algebra, 57 (2009), 777–815 | DOI | MR | Zbl

[4] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416 (2006), 1010–1032 | DOI | MR | Zbl

[5] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zh. vychisl. mat., 21 (2018), 255–258 | Zbl

[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[7] C. R. Johnson, S. Furtado, “A generalization of Sylvester's law of inertia”, Linear Algebra Appl., 338 (2001), 287–290 | DOI | MR | Zbl