@article{ZNSL_2019_482_a7,
author = {Kh. D. Ikramov},
title = {Rationally verifiable necessary conditions for {Hermitian} congruence of complex matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--128},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/}
}
Kh. D. Ikramov. Rationally verifiable necessary conditions for Hermitian congruence of complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 120-128. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a7/
[1] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69
[2] Kh. D. Ikramov, “O proverke kongruentnosti akkretivnykh matrits”, Mat. zametki, 101 (2017), 854–859 | DOI | Zbl
[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for unitary congruence and *congruence”, Linear Multilinear Algebra, 57 (2009), 777–815 | DOI | MR | Zbl
[4] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416 (2006), 1010–1032 | DOI | MR | Zbl
[5] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zh. vychisl. mat., 21 (2018), 255–258 | Zbl
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[7] C. R. Johnson, S. Furtado, “A generalization of Sylvester's law of inertia”, Linear Algebra Appl., 338 (2001), 287–290 | DOI | MR | Zbl