An attempt of spectral theory for the $*$-congruence transformations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the possibility of reducing a square complex matrix $A$ to a direct sum of smaller matrices by using $*$-congruence transformations. It turns out that this possibility is related to appropriate partitions of the spectrum of the cosquare of $A$. This makes it possible to associate the direct summands of the sum with subsets of the latter spectrum.
@article{ZNSL_2019_482_a6,
     author = {Kh. D. Ikramov},
     title = {An attempt of spectral theory for the $*$-congruence transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--119},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - An attempt of spectral theory for the $*$-congruence transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 114
EP  - 119
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/
LA  - ru
ID  - ZNSL_2019_482_a6
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T An attempt of spectral theory for the $*$-congruence transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 114-119
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/
%G ru
%F ZNSL_2019_482_a6
Kh. D. Ikramov. An attempt of spectral theory for the $*$-congruence transformations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/