An attempt of spectral theory for the $*$-congruence transformations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper discusses the possibility of reducing a square complex matrix $A$ to a direct sum of smaller matrices by using $*$-congruence transformations. It turns out that this possibility is related to appropriate partitions of the spectrum of the cosquare of $A$. This makes it possible to associate the direct summands of the sum with subsets of the latter spectrum.
@article{ZNSL_2019_482_a6,
author = {Kh. D. Ikramov},
title = {An attempt of spectral theory for the $*$-congruence transformations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--119},
publisher = {mathdoc},
volume = {482},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/}
}
Kh. D. Ikramov. An attempt of spectral theory for the $*$-congruence transformations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/