An attempt of spectral theory for the $*$-congruence transformations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper discusses the possibility of reducing a square complex matrix $A$ to a direct sum of smaller matrices by using $*$-congruence transformations. It turns out that this possibility is related to appropriate partitions of the spectrum of the cosquare of $A$. This makes it possible to associate the direct summands of the sum with subsets of the latter spectrum.
@article{ZNSL_2019_482_a6,
     author = {Kh. D. Ikramov},
     title = {An attempt of spectral theory for the $*$-congruence transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--119},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - An attempt of spectral theory for the $*$-congruence transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 114
EP  - 119
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/
LA  - ru
ID  - ZNSL_2019_482_a6
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T An attempt of spectral theory for the $*$-congruence transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 114-119
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/
%G ru
%F ZNSL_2019_482_a6
Kh. D. Ikramov. An attempt of spectral theory for the $*$-congruence transformations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a6/

[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[2] R. A. Horn, V. V. Sergeichuk, “A regularization algorithm for matrices of bilinear and sesquilinear forms”, Linear Algebra Appl., 412 (2006), 380–395 | DOI | MR | Zbl

[3] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zh. vychisl. matem., 21 (2018), 255–258 | Zbl

[4] Kh. D. Ikramov, Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR