Relation graphs of the split-sedenion algebra
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 87-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper introduces the Cayley–Dickson split-sedenion algebra. Exact expressions for annihilators and orthogonalizers of its zero divisors are obtained, and these results are applied in describing relation graphs of the split-sedenions in terms of their diameters and cliques.
@article{ZNSL_2019_482_a5,
     author = {S. A. Zhilina},
     title = {Relation graphs of the split-sedenion algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--113},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/}
}
TY  - JOUR
AU  - S. A. Zhilina
TI  - Relation graphs of the split-sedenion algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 87
EP  - 113
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/
LA  - ru
ID  - ZNSL_2019_482_a5
ER  - 
%0 Journal Article
%A S. A. Zhilina
%T Relation graphs of the split-sedenion algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 87-113
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/
%G ru
%F ZNSL_2019_482_a5
S. A. Zhilina. Relation graphs of the split-sedenion algebra. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 87-113. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/

[1] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl

[2] L. Bentz, D. Tray, “Subalgebras of the split octonions”, Adv. Appl. Clifford Alg., 28:2 (2018), 40 | DOI | MR | Zbl

[3] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley-Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR | Zbl

[4] R. E. Cawagas, “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Disc. Math. General Algebra Appl., 24 (2004), 251–265 | DOI | MR | Zbl

[5] M. Goldberg, T. J. Laffey, “On the radius in Cayley-Dickson algebras”, Proc. Amer. Math. Soc., 143:11 (2015), 4733–4744 | DOI | MR | Zbl

[6] A. E. Guterman, S. A. Zhilina, Cayley-Dickson split-algebras: doubly alternative zero divisors and relation graphs, Preprint

[7] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75

[8] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl

[9] G. Moreno, “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera serie), 4:1 (1998), 13–28 | MR | Zbl

[10] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl