@article{ZNSL_2019_482_a5,
author = {S. A. Zhilina},
title = {Relation graphs of the split-sedenion algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--113},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/}
}
S. A. Zhilina. Relation graphs of the split-sedenion algebra. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 87-113. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a5/
[1] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl
[2] L. Bentz, D. Tray, “Subalgebras of the split octonions”, Adv. Appl. Clifford Alg., 28:2 (2018), 40 | DOI | MR | Zbl
[3] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley-Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR | Zbl
[4] R. E. Cawagas, “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Disc. Math. General Algebra Appl., 24 (2004), 251–265 | DOI | MR | Zbl
[5] M. Goldberg, T. J. Laffey, “On the radius in Cayley-Dickson algebras”, Proc. Amer. Math. Soc., 143:11 (2015), 4733–4744 | DOI | MR | Zbl
[6] A. E. Guterman, S. A. Zhilina, Cayley-Dickson split-algebras: doubly alternative zero divisors and relation graphs, Preprint
[7] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75
[8] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl
[9] G. Moreno, “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera serie), 4:1 (1998), 13–28 | MR | Zbl
[10] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl