Length of a direct sum of nonassociative algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86
Voir la notice de l'article provenant de la source Math-Net.Ru
A lower and an upper bounds for the length of a direct sum of nonassociative algebras are obtained, and their sharpness is established. Note that while the lower bound for the length of a direct sum in the associative and nonassociative cases turns out to be the same, the upper bound in the nonassociative case significantly exceeds its associative counterpart.
@article{ZNSL_2019_482_a4,
author = {A. E. Guterman and D. K. Kudryavtsev and O. V. Markova},
title = {Length of a direct sum of nonassociative algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--86},
publisher = {mathdoc},
volume = {482},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/}
}
TY - JOUR AU - A. E. Guterman AU - D. K. Kudryavtsev AU - O. V. Markova TI - Length of a direct sum of nonassociative algebras JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 73 EP - 86 VL - 482 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/ LA - ru ID - ZNSL_2019_482_a4 ER -
A. E. Guterman; D. K. Kudryavtsev; O. V. Markova. Length of a direct sum of nonassociative algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/