Length of a direct sum of nonassociative algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A lower and an upper bounds for the length of a direct sum of nonassociative algebras are obtained, and their sharpness is established. Note that while the lower bound for the length of a direct sum in the associative and nonassociative cases turns out to be the same, the upper bound in the nonassociative case significantly exceeds its associative counterpart.
@article{ZNSL_2019_482_a4,
     author = {A. E. Guterman and D. K. Kudryavtsev and O. V. Markova},
     title = {Length of a direct sum of nonassociative algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--86},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - D. K. Kudryavtsev
AU  - O. V. Markova
TI  - Length of a direct sum of nonassociative algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 73
EP  - 86
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/
LA  - ru
ID  - ZNSL_2019_482_a4
ER  - 
%0 Journal Article
%A A. E. Guterman
%A D. K. Kudryavtsev
%A O. V. Markova
%T Length of a direct sum of nonassociative algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 73-86
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/
%G ru
%F ZNSL_2019_482_a4
A. E. Guterman; D. K. Kudryavtsev; O. V. Markova. Length of a direct sum of nonassociative algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/

[1] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii matrichnykh semeistv”, Matem. zametki, 74:6 (2003), 815–826 | DOI | Zbl

[2] Yu. A. Al'pin, Kh. D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl

[3] V. Futorny, R. A. Horn, V. V. Sergeichuk, “Specht's criterion for systems of linear mappings”, Linear Algebra Appl., 519 (2017), 278–295 | DOI | MR | Zbl

[4] A. E. Guterman, D. K. Kudryavtsev, “Dlina algebr kvaternionov i oktonionov”, Zap. nauchn. semin. POMI, 453, 2016, 22–32

[5] A. E. Guterman, D. K. Kudryavtsev, “Upper bounds for the length of non-associative algebras”, J. Algebra (to appear) ; February, 2019, arXiv: 1902.08389 [math.CO] | MR

[6] A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl

[7] A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl

[8] A. E. Guterman, O. V. Markova, “Dlina gruppovykh algebr grupp nebolshogo razmera”, Zap. nauchn. semin. POMI, 472, 2018, 76–87

[9] A. Guterman, O. Markova, V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices”, Linear Algebra Appl., 568 (2019), 135–154 | DOI | MR | Zbl

[10] N. A. Kolegov, O. V. Markova, “Sistemy porozhdayuschikh matrichnykh algebr intsidentnosti nad konechnymi polyami”, Zap. nauchn. semin. POMI, 472, 2018, 120–144

[11] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Matem. sb., 200:12 (2009), 41–62 | DOI | Zbl

[12] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. mat., 17:6 (2012), 65–173

[13] O. V. Markova, “O dline algebry verkhnetreugolnykh matrits”, Uspekhi matem. nauk, 60:3 (2005), 177–178 | DOI | MR | Zbl

[14] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[15] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[16] Ya. Shitov, “An improved bound for the length of matrix algebras”, Algebra Number Theory, 13 (2019), 1501–1507 | DOI | MR | Zbl

[17] A. J. M. Spencer, R. S. Rivlin, “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl

[18] A. J. M. Spencer, R. S. Rivlin, “Further results in the theory of matrix polynomials”, Arch. Ration. Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl