Length of a direct sum of nonassociative algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A lower and an upper bounds for the length of a direct sum of nonassociative algebras are obtained, and their sharpness is established. Note that while the lower bound for the length of a direct sum in the associative and nonassociative cases turns out to be the same, the upper bound in the nonassociative case significantly exceeds its associative counterpart.
@article{ZNSL_2019_482_a4,
     author = {A. E. Guterman and D. K. Kudryavtsev and O. V. Markova},
     title = {Length of a direct sum of nonassociative algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - D. K. Kudryavtsev
AU  - O. V. Markova
TI  - Length of a direct sum of nonassociative algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 73
EP  - 86
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/
LA  - ru
ID  - ZNSL_2019_482_a4
ER  - 
%0 Journal Article
%A A. E. Guterman
%A D. K. Kudryavtsev
%A O. V. Markova
%T Length of a direct sum of nonassociative algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 73-86
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/
%G ru
%F ZNSL_2019_482_a4
A. E. Guterman; D. K. Kudryavtsev; O. V. Markova. Length of a direct sum of nonassociative algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 73-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a4/