2-words: their graphs and matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 45-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Double-occurrence words play an important role in genetics for describing epigenetic genome rearrangements. A useful geometric representation for double-occurrence words is given by the so-called assembly graphs. The paper investigates properties of the incidence matrices that correspond to assembly graphs. An explicit matrix characterization for simple assembly graphs of a given structure and series of constructions, using these graphs and important for genetic investigations, are provided.
@article{ZNSL_2019_482_a3,
     author = {A. E. Guterman and E. M. Kreines and N. V. Ostroukhova},
     title = {2-words: their graphs and matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--72},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a3/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - E. M. Kreines
AU  - N. V. Ostroukhova
TI  - 2-words: their graphs and matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 45
EP  - 72
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a3/
LA  - ru
ID  - ZNSL_2019_482_a3
ER  - 
%0 Journal Article
%A A. E. Guterman
%A E. M. Kreines
%A N. V. Ostroukhova
%T 2-words: their graphs and matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 45-72
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a3/
%G ru
%F ZNSL_2019_482_a3
A. E. Guterman; E. M. Kreines; N. V. Ostroukhova. 2-words: their graphs and matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 45-72. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a3/

[1] A. Angeleska, N. Jonoska, M. Saito, “DNA recombinations through assembly graphs”, Discr. Appl. Math., 157 (2009), 3020–3037 | DOI | MR | Zbl

[2] A. Angeleska, N. Jonoska, M. Saito, L. F. Landweber, “RNA-guided DNA assembly”, J. Theor. Biology, 248:4 (2007), 706–720 | DOI | MR

[3] R. Arredondo, Properties of graphs used to model DNA recombination, Grad. Theses and Dissertations, 2014 https://scholarcommons.usf.edu/etd/4979

[4] R. Arredondo, Reductions on double occurrence words, November 2013, arXiv: 1311.3543 | MR

[5] J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito, “Four-regular graphs with rigid vertices associated to DNA recombination”, Discr. Appl. Math., 161 (2013), 1378–1394 | DOI | MR | Zbl

[6] A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott, G. Rozenberg, Computing in Living Cells, Springer, 2005

[7] A. Ehrenfeucht, T. Harju, G. Rozenberg, “Gene assembly through cyclic graph decomposition”, Theor. Comput. Sci., 281 (2002), 325–349 | DOI | MR | Zbl

[8] L. Kari, L. F. Landweber, “Computational power of gene rearrangement”, DNA Based Computers, eds. E. Winfree, D.K. Gifford, AMS, 1999, 207–216 | MR | Zbl

[9] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus, T. G. Doak, L. F. Landweber, “RNA-mediated epigenetic programming of a genome-rearrangement pathway”, Nature, 451 (2008), 153–159 | DOI

[10] D. M. Prescott, A. Ehrenfeucht, G. Rozenberg, “Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates”, J. Theor. Biology, 222 (2003), 323–330 | DOI | MR | Zbl