On the integral of a polynomial with multiple roots
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 28-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A full integral of a polynomial is defined as its integral with the property that any multiple root of the polynomial is a root of this integral. The paper investigates relationships between the existence of a full integral and the form of a polynomial. In particular, it is proved that the full integral exists if the polynomial has no more than one multiple root. The full integral does not exist if the number of multiple roots strictly exceeds the number of simple roots increased by one.
@article{ZNSL_2019_482_a2,
     author = {A. E. Guterman and S. V. Danielyan},
     title = {On the integral of a polynomial with multiple roots},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--44},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a2/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - S. V. Danielyan
TI  - On the integral of a polynomial with multiple roots
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 28
EP  - 44
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a2/
LA  - ru
ID  - ZNSL_2019_482_a2
ER  - 
%0 Journal Article
%A A. E. Guterman
%A S. V. Danielyan
%T On the integral of a polynomial with multiple roots
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 28-44
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a2/
%G ru
%F ZNSL_2019_482_a2
A. E. Guterman; S. V. Danielyan. On the integral of a polynomial with multiple roots. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 28-44. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a2/

[1] S. Zdravkovska, “Topologicheskaya klassifikatsiya polinomialnykh otobrazhenii”, Usp. matem. nauk, 25:4 (1970), 179–180 | MR | Zbl

[2] C. F. Gauss, Gauß Werke, v. 3, 2nd Edn, Königliche Gesellschaft der Wissenschaften, Göttingen, 1876

[3] A. Khare, “Vector spaces as unions of proper subspaces”, Linear Algebra Appl., 431:9 (2009), 1681–1686 | DOI | MR | Zbl

[4] F. Lukas, “Sur une application de la mécanique rationnelle à la théorie des équations”, C. R. Acad. Sci. (Paris), 89 (1879), 224–230

[5] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002 | MR

[6] M. Roitman, “On roots of polynomials and of their derivatives”, J. London Math. Soc., 27:2 (1983), 248–256 | DOI | MR | Zbl

[7] Ch.-Ch. Yang, “A problem on polynomials”, Rev. Roumaine Math. Pures Appl., 22 (1977), 595–598 | MR | Zbl