On some sets of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) Toeplitz and Hankel matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 288-294
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A description of certain sets of pairs of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) Toeplitz and Hankel matrices is given.
			
            
            
            
          
        
      @article{ZNSL_2019_482_a19,
     author = {V. N. Chugunov},
     title = {On some sets of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) {Toeplitz} and {Hankel} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {288--294},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a19/}
}
                      
                      
                    TY - JOUR AU - V. N. Chugunov TI - On some sets of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) Toeplitz and Hankel matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 288 EP - 294 VL - 482 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a19/ LA - ru ID - ZNSL_2019_482_a19 ER -
V. N. Chugunov. On some sets of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) Toeplitz and Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 288-294. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a19/