@article{ZNSL_2019_482_a16,
author = {K. A. Taranin},
title = {$\pm1$-matrices with vanishing permanent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {244--258},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/}
}
K. A. Taranin. $\pm1$-matrices with vanishing permanent. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/
[1] M. V. Budrevich, A. E. Guterman, K. A. Taranin, “O delimosti parmanenta $(\pm 1)$-matrits”, Zap. nauchn. semin. POMI, 439, 2015, 26–37
[2] M. V. Budrevich, A. E. Guterman, K. A. Taranin, “K teoreme Kroitera–Seiftera o delimosti permanentov”, Zap. nauchn. semin. POMI, 463, 2017, 25–35
[3] A. D. Korshunov, “O chisle $(-1,1)$-matrits poryadka n s fiksirovannym permanentom”, Diskr. analiz issled. oper., 3:1 (1996), 23–42 | MR | Zbl
[4] Kh. Mink, Permanenty, Mir, M., 1982 | MR
[5] R. B. Bapat, “Recent developments and open problems in the theory of permanents”, Math. Student, 76:1–4 (2007), 55–69 | MR | Zbl
[6] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1991 | MR | Zbl
[7] R. A. Brualdi, B. L. Shader, Matrices of Sign-Solvable Linear Systems, Cambridge Univ. Press, 1995 | MR | Zbl
[8] M. V. Budrevich, A. E. Guterman, “Kräuter conjecture on permanents is true”, J. Comb. Theory, Ser. A, 162 (2019), 306–343 | DOI | MR | Zbl
[9] G.-S. Cheon, I. M. Wanless, “An update on Minc's survey of open problems involving permanents”, Linear Algebra Appl., 403 (2005), 314–342 | DOI | MR | Zbl
[10] A. E. Guterman, K. A. Taranin, “On the values of the permanent of $(0,1)$-matrices”, Linear Algebra Appl., 552 (2018), 256–276 | DOI | MR | Zbl
[11] Y.-H. Kiem, S.-H. Kye, J. Na, “Product vectors in the ranges of multi-partite states with positive partial transposes and permanents of matrices”, Commun. Math. Phys., 338:2 (2015), 621–639 | DOI | MR | Zbl
[12] A. R. Kräuter, “Recent results on permanents of $(1, -1)$-matrices”, Ber. Math.-Statist. Sekt. Forschungsgesellschaft Joanneum Graz, 249 (1985), 1–25
[13] A. R. Kräuter, N. Seifter, “On some questions concerning permanents of $(1, -1)$-matrices”, Isr. J. Math., 45:1 (1983), 53–62 | DOI | MR | Zbl
[14] W. McCuaig, “Pólya's permanent problem”, Electron. J. Combin., 11 (2004), R79 | DOI | MR | Zbl
[15] R. Simion, F. W. Schmidt, “On $(+1, -1)$-matrices with vanishing permanent”, Discrete Math., 46 (1983), 107–108 | DOI | MR | Zbl
[16] L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201 | DOI | MR | Zbl
[17] E. T. H. Wang, “On permanents of $(1, -1)$-matrices”, Isr. J. Math., 18 (1974), 353–361 | DOI | MR
[18] I. M. Wanless, “Permanents of matrices of signed ones”, Linear Multilinear Algebra, 53:6 (2005), 427–433 | DOI | MR | Zbl
[19] T.-C. Wei, S. Severini, “Matrix permanent and quantum entanglement of permutation invariant states”, J. Math. Phys., 51:9 (2010) | DOI | MR
[20] F. Zhang, “An update on a few permanent conjectures”, Spec. Matrices, 4 (2016), 305–316 | MR | Zbl