$\pm1$-matrices with vanishing permanent
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of finding $(-1,1)$-matrices with permanent $0$ was proposed by Edward Wang in 1974. This paper states and proves bounds on the number of negative entries in a matrix with zero permanent and minimal number of negative entries among all matrices of the same equivalence class. Then representatives of every equivalence class of matrices with zero permanent are found for $n\leq 5$.
			
            
            
            
          
        
      @article{ZNSL_2019_482_a16,
     author = {K. A. Taranin},
     title = {$\pm1$-matrices with vanishing permanent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--258},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/}
}
                      
                      
                    K. A. Taranin. $\pm1$-matrices with vanishing permanent. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/