$\pm1$-matrices with vanishing permanent
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding $(-1,1)$-matrices with permanent $0$ was proposed by Edward Wang in 1974. This paper states and proves bounds on the number of negative entries in a matrix with zero permanent and minimal number of negative entries among all matrices of the same equivalence class. Then representatives of every equivalence class of matrices with zero permanent are found for $n\leq 5$.
@article{ZNSL_2019_482_a16,
     author = {K. A. Taranin},
     title = {$\pm1$-matrices with vanishing permanent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--258},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/}
}
TY  - JOUR
AU  - K. A. Taranin
TI  - $\pm1$-matrices with vanishing permanent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 244
EP  - 258
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/
LA  - ru
ID  - ZNSL_2019_482_a16
ER  - 
%0 Journal Article
%A K. A. Taranin
%T $\pm1$-matrices with vanishing permanent
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 244-258
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/
%G ru
%F ZNSL_2019_482_a16
K. A. Taranin. $\pm1$-matrices with vanishing permanent. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/