$\pm1$-matrices with vanishing permanent
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of finding $(-1,1)$-matrices with permanent $0$ was proposed by Edward Wang in 1974. This paper states and proves bounds on the number of negative entries in a matrix with zero permanent and minimal number of negative entries among all matrices of the same equivalence class. Then representatives of every equivalence class of matrices with zero permanent are found for $n\leq 5$.
@article{ZNSL_2019_482_a16,
     author = {K. A. Taranin},
     title = {$\pm1$-matrices with vanishing permanent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--258},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/}
}
TY  - JOUR
AU  - K. A. Taranin
TI  - $\pm1$-matrices with vanishing permanent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 244
EP  - 258
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/
LA  - ru
ID  - ZNSL_2019_482_a16
ER  - 
%0 Journal Article
%A K. A. Taranin
%T $\pm1$-matrices with vanishing permanent
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 244-258
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/
%G ru
%F ZNSL_2019_482_a16
K. A. Taranin. $\pm1$-matrices with vanishing permanent. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 244-258. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a16/

[1] M. V. Budrevich, A. E. Guterman, K. A. Taranin, “O delimosti parmanenta $(\pm 1)$-matrits”, Zap. nauchn. semin. POMI, 439, 2015, 26–37

[2] M. V. Budrevich, A. E. Guterman, K. A. Taranin, “K teoreme Kroitera–Seiftera o delimosti permanentov”, Zap. nauchn. semin. POMI, 463, 2017, 25–35

[3] A. D. Korshunov, “O chisle $(-1,1)$-matrits poryadka n s fiksirovannym permanentom”, Diskr. analiz issled. oper., 3:1 (1996), 23–42 | MR | Zbl

[4] Kh. Mink, Permanenty, Mir, M., 1982 | MR

[5] R. B. Bapat, “Recent developments and open problems in the theory of permanents”, Math. Student, 76:1–4 (2007), 55–69 | MR | Zbl

[6] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1991 | MR | Zbl

[7] R. A. Brualdi, B. L. Shader, Matrices of Sign-Solvable Linear Systems, Cambridge Univ. Press, 1995 | MR | Zbl

[8] M. V. Budrevich, A. E. Guterman, “Kräuter conjecture on permanents is true”, J. Comb. Theory, Ser. A, 162 (2019), 306–343 | DOI | MR | Zbl

[9] G.-S. Cheon, I. M. Wanless, “An update on Minc's survey of open problems involving permanents”, Linear Algebra Appl., 403 (2005), 314–342 | DOI | MR | Zbl

[10] A. E. Guterman, K. A. Taranin, “On the values of the permanent of $(0,1)$-matrices”, Linear Algebra Appl., 552 (2018), 256–276 | DOI | MR | Zbl

[11] Y.-H. Kiem, S.-H. Kye, J. Na, “Product vectors in the ranges of multi-partite states with positive partial transposes and permanents of matrices”, Commun. Math. Phys., 338:2 (2015), 621–639 | DOI | MR | Zbl

[12] A. R. Kräuter, “Recent results on permanents of $(1, -1)$-matrices”, Ber. Math.-Statist. Sekt. Forschungsgesellschaft Joanneum Graz, 249 (1985), 1–25

[13] A. R. Kräuter, N. Seifter, “On some questions concerning permanents of $(1, -1)$-matrices”, Isr. J. Math., 45:1 (1983), 53–62 | DOI | MR | Zbl

[14] W. McCuaig, “Pólya's permanent problem”, Electron. J. Combin., 11 (2004), R79 | DOI | MR | Zbl

[15] R. Simion, F. W. Schmidt, “On $(+1, -1)$-matrices with vanishing permanent”, Discrete Math., 46 (1983), 107–108 | DOI | MR | Zbl

[16] L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201 | DOI | MR | Zbl

[17] E. T. H. Wang, “On permanents of $(1, -1)$-matrices”, Isr. J. Math., 18 (1974), 353–361 | DOI | MR

[18] I. M. Wanless, “Permanents of matrices of signed ones”, Linear Multilinear Algebra, 53:6 (2005), 427–433 | DOI | MR | Zbl

[19] T.-C. Wei, S. Severini, “Matrix permanent and quantum entanglement of permutation invariant states”, J. Math. Phys., 51:9 (2010) | DOI | MR

[20] F. Zhang, “An update on a few permanent conjectures”, Spec. Matrices, 4 (2016), 305–316 | MR | Zbl