Maps that strongly preserve $\lambda$-scrambling matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 231-243

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that for $\lambda > 1$, an additive map that strongly preserves the set of $\lambda$-scrambling matrices over $\mathbf{B}$ is a bijection. The general form of such a map over any antinegative commutative semiring with identity and without zero divisors is characterized.
@article{ZNSL_2019_482_a15,
     author = {A. M. Maksaev},
     title = {Maps that strongly preserve $\lambda$-scrambling matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {231--243},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/}
}
TY  - JOUR
AU  - A. M. Maksaev
TI  - Maps that strongly preserve $\lambda$-scrambling matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 231
EP  - 243
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/
LA  - ru
ID  - ZNSL_2019_482_a15
ER  - 
%0 Journal Article
%A A. M. Maksaev
%T Maps that strongly preserve $\lambda$-scrambling matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 231-243
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/
%G ru
%F ZNSL_2019_482_a15
A. M. Maksaev. Maps that strongly preserve $\lambda$-scrambling matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 231-243. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/