Maps that strongly preserve $\lambda$-scrambling matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 231-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, it is proved that for $\lambda > 1$, an additive map that strongly preserves the set of $\lambda$-scrambling matrices over $\mathbf{B}$ is a bijection. The general form of such a map over any antinegative commutative semiring with identity and without zero divisors is characterized.
@article{ZNSL_2019_482_a15,
     author = {A. M. Maksaev},
     title = {Maps that strongly preserve $\lambda$-scrambling matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {231--243},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/}
}
TY  - JOUR
AU  - A. M. Maksaev
TI  - Maps that strongly preserve $\lambda$-scrambling matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 231
EP  - 243
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/
LA  - ru
ID  - ZNSL_2019_482_a15
ER  - 
%0 Journal Article
%A A. M. Maksaev
%T Maps that strongly preserve $\lambda$-scrambling matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 231-243
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/
%G ru
%F ZNSL_2019_482_a15
A. M. Maksaev. Maps that strongly preserve $\lambda$-scrambling matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 231-243. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a15/

[1] M. Akelbek, S. Kirkland, “Coefficients of ergodicity and scrambling index”, Linear Algebra Appl., 430 (2009), 1111–1130 | DOI | MR | Zbl

[2] Y. Huang, B. Liu, “Generalized scrambling indices of a primitive digraph”, Linear Algebra Appl., 433 (2010), 1798–1808 | DOI | MR | Zbl

[3] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York, 1971 | MR | Zbl

[4] E. Seneta, Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981 | MR

[5] G. Frobenius, “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1897, 994–1015 | Zbl

[6] S. Pierce and others, “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | MR | Zbl

[7] P. S̆emrl, “Endomorphisms of the poset of idempotent matrices”, J. Algebra, 536 (2019), 1–38 | DOI | MR | Zbl

[8] S. Mohtashami, A. Salemi, M. Soleymani, “Linear preservers of circulant majorization on rectangular matrices”, Linear Multilinear Algebra, 67:8 (2019), 1554–1560 | DOI | MR | Zbl

[9] M. V. Budrevich, A. E. Guterman, M. A. Daffner, “Lineinye otobrazheniya kososimmetricheskikh matrits, sokhranyayuschie permanent”, Zap. nauchn. semin. POMI, 472, 2018, 31–43

[10] A. Guterman, M. Johnson, M. Kambites, “Linear isomorphisms preserving Green's relations for matrices over anti-negative semifields”, Linear Algebra Appl., 545 (2018), 1–14 | DOI | MR | Zbl

[11] L. B. Beasley, P. Mohindru, R. Pereira, “Preservers of completely positive matrix rank for inclines”, Bull. Malays. Math. Sci. Soc., 42:2 (2019), 437–447 | DOI | MR | Zbl

[12] J.-T. Chan, K. Chan, Choi-Nai, C. Tu, “The cone of nonnegative $c$-numerical range and its preservers”, Linear Algebra Appl., 564 (2019), 225–235 | DOI | MR | Zbl

[13] L. B. Beasley, J. H. Kim, S.-Z. Song, “Linear operators that preserve the genus of a graph”, Mathematics, 7 (2019), 312 | DOI | MR

[14] C. Costara, “Nonlinear determinant preserving maps on matrix algebras”, Linear Algebra Appl., 583 (2019), 165–170 | DOI | MR | Zbl

[15] F. Akbarzadeh, A. Armandnejad, “On row-sum majorization”, Czech. Math. J., 2019 | DOI | MR

[16] L. Catalano, “On maps preserving products equal to a rank-one idempotent”, Linear Multilinear Algebra, 2019 | DOI

[17] A. E. Guterman, A. M. Maksaev, “Preserving $\lambda$-scrambling matrices”, Fund. Informaticae, 162 (2018), 119–141 | DOI | MR | Zbl

[18] A. E. Guterman, A. M. Maksaev, “Maps preserving scrambling index”, Linear Multilinear Algebra, 66:4 (2018), 840–859 | DOI | MR

[19] A. E. Guterman, A. M. Maksaev, “Additive maps preserving the scrambling index are bijective”, Acta Sci. Math. (Szeged), 84:1-2 (2018), 19–38 | DOI | MR | Zbl

[20] A. E. Guterman, A. M. Maksaev, “Maps preserving matrices of extremal scrambling index”, Special Matrices, 6 (2018), 166–179 | DOI | MR | Zbl