Quadratic minimal splines with multiple nodes
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 220-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies quadratic minimal splines on nonuniform grids with multiple nodes on a closed interval. Asymptotic representations for normalized splines are obtained. In dependence of the multiplicity of grid nodes, it is established to which class of continuity the spline functions under consideration belong. The results obtained are illustrated with examples of hyperbolic and trigonometric minimal splines.
@article{ZNSL_2019_482_a14,
     author = {E. K. Kulikov and A. A. Makarov},
     title = {Quadratic minimal splines with multiple nodes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {220--230},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/}
}
TY  - JOUR
AU  - E. K. Kulikov
AU  - A. A. Makarov
TI  - Quadratic minimal splines with multiple nodes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 220
EP  - 230
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/
LA  - ru
ID  - ZNSL_2019_482_a14
ER  - 
%0 Journal Article
%A E. K. Kulikov
%A A. A. Makarov
%T Quadratic minimal splines with multiple nodes
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 220-230
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/
%G ru
%F ZNSL_2019_482_a14
E. K. Kulikov; A. A. Makarov. Quadratic minimal splines with multiple nodes. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 220-230. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/

[1] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo S.-Peterb. un-ta, SPb., 1994

[2] B. I. Kvasov, Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006

[3] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl

[4] J. A. Cottrel, T. G. R. Hughes, Yu. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley Sons, 2009 | MR | Zbl

[5] T. Lyche, C. Manni, H. Speleers, “Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement”, Lect. Notes Math., 2219, 2018, 1–76 | DOI | MR | Zbl

[6] A. A. Makarov, “O dvoistvennykh funktsionalakh k minimalnym splainam”, Zap. nauchn. semin. POMI, 453, 2016, 198–218

[7] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Computer Sci., 10187, 2017, 448–455 | DOI | MR | Zbl

[8] Yu. K. Demyanovich, “Ob asimptoticheskikh razlozheniyakh koordinatnykh splainov”, Zap. nauchn. semin. POMI, 359, 2008, 17–30

[9] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472, 2018, 179–194

[10] Yu. K. Demyanovich, A. A. Makarov, “Neobkhodimye i dostatochnye usloviya neotritsatelnosti koordinatnykh trigonometricheskikh splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta. Ser. 1, 4:1 (2017), 9–16