@article{ZNSL_2019_482_a14,
author = {E. K. Kulikov and A. A. Makarov},
title = {Quadratic minimal splines with multiple nodes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {220--230},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/}
}
E. K. Kulikov; A. A. Makarov. Quadratic minimal splines with multiple nodes. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 220-230. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a14/
[1] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo S.-Peterb. un-ta, SPb., 1994
[2] B. I. Kvasov, Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006
[3] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl
[4] J. A. Cottrel, T. G. R. Hughes, Yu. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley Sons, 2009 | MR | Zbl
[5] T. Lyche, C. Manni, H. Speleers, “Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement”, Lect. Notes Math., 2219, 2018, 1–76 | DOI | MR | Zbl
[6] A. A. Makarov, “O dvoistvennykh funktsionalakh k minimalnym splainam”, Zap. nauchn. semin. POMI, 453, 2016, 198–218
[7] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Computer Sci., 10187, 2017, 448–455 | DOI | MR | Zbl
[8] Yu. K. Demyanovich, “Ob asimptoticheskikh razlozheniyakh koordinatnykh splainov”, Zap. nauchn. semin. POMI, 359, 2008, 17–30
[9] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472, 2018, 179–194
[10] Yu. K. Demyanovich, A. A. Makarov, “Neobkhodimye i dostatochnye usloviya neotritsatelnosti koordinatnykh trigonometricheskikh splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta. Ser. 1, 4:1 (2017), 9–16