@article{ZNSL_2019_482_a13,
author = {L. Yu. Kolotilina},
title = {Some bounds for inverses involving matrix sparsity pattern},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--219},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a13/}
}
L. Yu. Kolotilina. Some bounds for inverses involving matrix sparsity pattern. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 201-219. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a13/
[1] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102
[2] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120
[3] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195
[4] L. Yu. Kolotilina, “Otsenki obratnykh v norme $l_\infty$ dlya nekotorykh blochnykh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 145–158
[5] L. Yu. Kolotilina, “Novye podklassy klassa $\mathcal{H}$-matrits i sootvetstvuyuschie otsenki obratykh matrits”, Zap. nauchn. semin. POMI, 453, 2016, 148–171
[6] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165
[7] L. Yu. Kolotilina, “Ob odnom podklasse klassa nevyrozhdennykh $\mathcal{H}$-matrits i sootvetstvuyuschikh mnozhestvakh lokalizatsii sobstvennykh i singulyarnykh znachenii”, Zap. nauchn. semin. POMI, 472, 2018, 166–178
[8] L. Yu. Kolotilina, “Matritsy nekrasovskogo tipa i otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 169–183
[9] L. Yu. Kolotilina, “Nekotorye novye klassy nevyrozhdennykh matrits i verkhnie otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 184–200
[10] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl
[11] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 | MR | Zbl
[12] A. Brauer, “Limits for the characteristic roots of a matrix: II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl
[13] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl
[14] L. Cvetković, K. Doroslovac̆ki, “Max norm estimation for the inverse of block matrices”, Appl. Math. Comput., 242 (2014), 694–706 | MR | Zbl
[15] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl
[16] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl
[17] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl
[18] Ping-Fan Dai, “Error bounds for linear complementarity problems of DB-matrices”, Linear Algebra Appl., 434 (2011), 830–840 | DOI | MR | Zbl
[19] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl
[20] V. R. Kostić, L. Cvetković, D. L. Cvetković, “Pseudospectra localizations and their applications”, Numer. Linear Algebra Appl., 23 (2016), 356–372 | DOI | MR | Zbl
[21] Chaoqian Li, L. Cvetković, Yimin Wei, Jianxing Zhao, “An infinity norm bound for the inverse of Dashnic–Zusmanovich type matrices with applications”, Linear Algebra Appl., 565 (2019), 99–122 | DOI | MR | Zbl
[22] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of SDD and ${\mathcal S}$-SDD matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl
[23] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR
[24] S. Z. Pan, S. C. Chen, “An upper bound for $\|A^{-1}\|$ of strictly doubly diagonally dominant matrices”, J. Fuzhou Univ. Nat. Sci. Ed., 36 (2008), 39–642 (in Chinese) | MR
[25] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl
[26] R. S. Varga, Geršgorin and His Circles, Springer Ser. Comput. Math., 36, Springer, 2004 | DOI | MR | Zbl