@article{ZNSL_2019_482_a12,
author = {L. Yu. Kolotilina},
title = {New classes of nonsingular matrices and upper bounds for their inverses},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {184--200},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a12/}
}
L. Yu. Kolotilina. New classes of nonsingular matrices and upper bounds for their inverses. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 184-200. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a12/
[1] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl
[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102
[3] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120
[4] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195
[5] L. Yu. Kolotilina, “Nekotorye kharakterizatsii nekrasovskikh i $S$-nekrasovskikh matrits”, Zap. nauchn. semin. POMI, 428, 2014, 152–165
[6] L. Yu. Kolotilina, “Novye podklassy klassa $\mathcal{H}$-matrits i sootvetstvuyuschie otsenki obratykh matrits”, Zap. nauchn. semin. POMI, 453, 2016, 148–171
[7] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165
[8] L. Yu. Kolotilina, “Matritsy nekrasovskogo tipa i otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 169–183
[9] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl
[10] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl
[11] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl
[12] L. Cvetković, V. Kostić, M. Nedović, “Generalizations of Nekrasov matrices and applications”, Open Math., 13 (2015), 96–105 | MR | Zbl
[13] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl
[14] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and $M$-matrices”, Linear Algebra Appl., 169 (2009), 257–268 | DOI | MR
[15] C. Li, L. Cvetković, Y. Wei, J. Zhao, “An infinity norm bound for the inverse of Dashnic–Zusmanovich type matrices with applications”, Linear Algebra Appl., 565 (2019), 99–122 | DOI | MR | Zbl
[16] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of $SDD$ and ${\mathcal S}-SDD$ matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl
[17] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR
[18] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl
[19] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl
[20] Y. Wang, L. Gao, “An improvement of the infinity norm bound for the inverse of $\{P_1,P_2\}$-Nekrasov matrices”, J. Ineq. Appl., 177 (2019) | MR