Nekrasov type matrices and upper bounds for their inverses
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 169-183

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the so-called $P$-Nekrasov and $\{P_1, P_2\}$-Nekrasov matrices, defined in terms of permutation matrices $P, P_1, P_2$, which generalize the well-known notion of Nekrasov matrices. For such matrices $A$, available upper bounds on $\|A^{-1}\|_\infty$ are recalled, and new upper bounds for the $P$-Nekrasov and $\{P_1, P_2\}$-Nekrasov matrices are suggested. It is shown that the latter bound generally improves the earlier bounds, as well as the bound for the inverse of a $P$-Nekrasov matrix and the classical bound for the inverse of a strictly diagonally dominant matrix.
@article{ZNSL_2019_482_a11,
     author = {L. Yu. Kolotilina},
     title = {Nekrasov type matrices and upper bounds for their inverses},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--183},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a11/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Nekrasov type matrices and upper bounds for their inverses
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 169
EP  - 183
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a11/
LA  - ru
ID  - ZNSL_2019_482_a11
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Nekrasov type matrices and upper bounds for their inverses
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 169-183
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a11/
%G ru
%F ZNSL_2019_482_a11
L. Yu. Kolotilina. Nekrasov type matrices and upper bounds for their inverses. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 169-183. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a11/