Commutativity of matrices up to a matrix factor
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 151-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix relation $ AB = CBA $ is investigated. An explicit description of the space of matrices $B$ satisfying this relation is obtained for an arbitrary fixed matrix $C$ and a diagonalizable matrix $A$. The connection between this space and the family of right annihilators of the matrices $A- \lambda C $, where $ \lambda $ ranges over the set of eigenvalues of the matrix $A$, is studied. In the case where $ AB = CBA $, $ AC = CA $, $ BC = CB $, a canonical form for $ A, B, C$, generalizing Thompson's result for invertible $ A, B, C,$ is introduced. Also bounds for the length of pairs of matrices $ \{A, B \} $ of the form indicated are provided.
@article{ZNSL_2019_482_a10,
     author = {N. A. Kolegov and O. V. Markova},
     title = {Commutativity of matrices up to a matrix factor},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a10/}
}
TY  - JOUR
AU  - N. A. Kolegov
AU  - O. V. Markova
TI  - Commutativity of matrices up to a matrix factor
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 151
EP  - 168
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a10/
LA  - ru
ID  - ZNSL_2019_482_a10
ER  - 
%0 Journal Article
%A N. A. Kolegov
%A O. V. Markova
%T Commutativity of matrices up to a matrix factor
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 151-168
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a10/
%G ru
%F ZNSL_2019_482_a10
N. A. Kolegov; O. V. Markova. Commutativity of matrices up to a matrix factor. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 151-168. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a10/