Multigrid methods for solving two-dimensional boundary-value problems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 13-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Various methods for constructing algebraic multigrid type methods for solving multidimensional boundary-value problems are considered. Two-level iterative algorithms in Krylov subspaces based on the approximate Schur complement obtained by eliminating the edge nodes of the coarse grid are described on an example of two-dimensional rectangular grids. Some aspects of extending the methods proposed to the multilevel case, to nested triangular grids, and also to three-dimensional grids are discussed. A comparison with the classical multigrid methods based on using smoothing, restriction (aggregation), coarse-grid correction, and prolongation is provided. The efficiency of the algorithms suggested is demonstrated by numerical results for some model problems.
@article{ZNSL_2019_482_a1,
     author = {Ya. L. Gurieva and V. P. Il'in and A. V. Petukhov},
     title = {Multigrid methods for solving two-dimensional boundary-value problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--27},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a1/}
}
TY  - JOUR
AU  - Ya. L. Gurieva
AU  - V. P. Il'in
AU  - A. V. Petukhov
TI  - Multigrid methods for solving two-dimensional boundary-value problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 13
EP  - 27
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a1/
LA  - ru
ID  - ZNSL_2019_482_a1
ER  - 
%0 Journal Article
%A Ya. L. Gurieva
%A V. P. Il'in
%A A. V. Petukhov
%T Multigrid methods for solving two-dimensional boundary-value problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 13-27
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a1/
%G ru
%F ZNSL_2019_482_a1
Ya. L. Gurieva; V. P. Il'in; A. V. Petukhov. Multigrid methods for solving two-dimensional boundary-value problems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 13-27. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a1/

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, 2003 | MR | Zbl

[2] V. P. Ilin, Metody i tekhnologii konechnykh elementov, Izd. IVM i MG SO RAN, Novosibirsk, 2007

[3] M. A. Olshanskii, E. E. Tyrtyshnicov, Iterative Methods for Linear Systems. Theory and Applications, SIAM, Philadelphia, 2014 | MR | Zbl

[4] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation, SIAM, Philadelphia, 2015 | MR | Zbl

[5] V. P. Ilin, “O problemakh parallelnogo resheniya bolshikh SLAU”, Zap. nauchn. semin. POMI, 439, 2015, 112–127

[6] W. Hackbusch, Multi-Grid Methods and Applications, Springer Ser. Comput. Math., 4, Berlin, 1985 | DOI | MR | Zbl

[7] V. V. Shaidurov, “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, Comput. Math. Appl., 31:4/5 (1996), 161–171 | DOI | MR | Zbl

[8] G. Lu, X. Jiao, N. A. Missirlis, “Hybrid geometrical algebraic multigrid method with semi-iterative solution”, Numer. Linear. Algebra Appl., 21:2 (2014), 2212–258 | MR

[9] Y. Notay, A. Napov, “Further comparison of additive and multiplicative coarse grid correction”, Appl. Numer. Math., 65 (2013), 53–62 | DOI | MR | Zbl

[10] A. Napov, Y. Notay, “An efficient multigrid method for graph Laplacian systems II: Robust Aggregation”, SIAM J. Sci. Comput., 39:5 (2017), 379–403 | DOI | MR

[11] Y. Notay, Analysis of two-grid methods. The nonnormal case, Report GANMN 18-01, Universite Libre de Bruxelles, 2018 | MR

[12] R. M. de Zeeuw, “Matrix-dependent prolongations and restrictions in a blaskbokh multigrid solver”, J. Comput. Appl. Math., 33 (1990), 1–27 | DOI | MR | Zbl

[13] Y. Shapira, M. Israeli, A. Sidi, “Towards automatic multigrid algorithms for spd, nonsymetric and indefinite problems”, SIAM J. Sci. Comput., 17:2 (1996), 439–453 | DOI | MR | Zbl

[14] Y. Notay, “Algebraic two-level convergence theory for singular systems”, SIAM J. Matrix Anal. Appl., 37 (2016), 1419–1439 | DOI | MR | Zbl

[15] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, izd. SO RAN, Novosibirsk, 2017

[16] V. P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, izd. IVMiMG SO RAN, Novosibirsk, 2001

[17] R. Nabben, C. Vuik, “A comparison of deflation and coarse grid correction applied to a porous media flows”, SIAM J. Numer. Anal., 42 (2004), 1631–1647 | DOI | MR | Zbl

[18] Y. Notay, “Flexible sonjugate gradients”, SIAM J. Sci. Comput., 22:4 (2000), 1444–1460 | DOI | MR | Zbl

[19] O. Axelsson, S. Brinkemper, V. P. Il'in, On some versions of incomplete block-matrix factorization iterative method, preprint 8392, Catholic Univ., Nijmegen, 1983 | MR

[20] P. Concus, G. H. Golub, G. Meurant, “Block preconditioning for the conjugate gradient method”, SIAM J. Sci. Statist. Comput., 6:1 (1985), 220–252 | DOI | MR | Zbl