Similarity automorphisms of the space of Hankel matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper describes the nonsingular matrices $U$ such that for every Hankel matrix $A$ of the same order, $U^{-1}AU$ also is a Hankel matrix.
@article{ZNSL_2019_482_a0,
     author = {A. K. Abdikalykov and Kh. D. Ikramov},
     title = {Similarity automorphisms of the space of {Hankel} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     year = {2019},
     volume = {482},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/}
}
TY  - JOUR
AU  - A. K. Abdikalykov
AU  - Kh. D. Ikramov
TI  - Similarity automorphisms of the space of Hankel matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 12
VL  - 482
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/
LA  - ru
ID  - ZNSL_2019_482_a0
ER  - 
%0 Journal Article
%A A. K. Abdikalykov
%A Kh. D. Ikramov
%T Similarity automorphisms of the space of Hankel matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-12
%V 482
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/
%G ru
%F ZNSL_2019_482_a0
A. K. Abdikalykov; Kh. D. Ikramov. Similarity automorphisms of the space of Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/

[1] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits”, Mat. zametki, 96 (2014), 687–696 | DOI | Zbl

[2] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits. II. Sluchai chetnoi razmernosti”, Mat. zametki, 98 (2015), 76–84 | DOI | Zbl

[3] T. N. E. Greville, “Toeplitz matrices with Toeplitz inverses revisited”, Linear Algebra Appl., 55 (1983), 87–92 | DOI | MR | Zbl

[4] A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “O sobstvennykh znacheniyakh (T+H)-tsirkulyantov i kosykh (T+H)-tsirkulyantov”, Sib. zh. vychisl. mat., 17 (2014), 111–124 | MR | Zbl