Similarity automorphisms of the space of Hankel matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the nonsingular matrices $U$ such that for every Hankel matrix $A$ of the same order, $U^{-1}AU$ also is a Hankel matrix.
@article{ZNSL_2019_482_a0,
     author = {A. K. Abdikalykov and Kh. D. Ikramov},
     title = {Similarity automorphisms of the space of {Hankel} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {482},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/}
}
TY  - JOUR
AU  - A. K. Abdikalykov
AU  - Kh. D. Ikramov
TI  - Similarity automorphisms of the space of Hankel matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 5
EP  - 12
VL  - 482
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/
LA  - ru
ID  - ZNSL_2019_482_a0
ER  - 
%0 Journal Article
%A A. K. Abdikalykov
%A Kh. D. Ikramov
%T Similarity automorphisms of the space of Hankel matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 5-12
%V 482
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/
%G ru
%F ZNSL_2019_482_a0
A. K. Abdikalykov; Kh. D. Ikramov. Similarity automorphisms of the space of Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/