Similarity automorphisms of the space of Hankel matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper describes the nonsingular matrices $U$ such that for every Hankel matrix $A$ of the same order, $U^{-1}AU$ also is a Hankel matrix.
@article{ZNSL_2019_482_a0,
author = {A. K. Abdikalykov and Kh. D. Ikramov},
title = {Similarity automorphisms of the space of {Hankel} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--12},
year = {2019},
volume = {482},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/}
}
A. K. Abdikalykov; Kh. D. Ikramov. Similarity automorphisms of the space of Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXII, Tome 482 (2019), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2019_482_a0/
[1] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits”, Mat. zametki, 96 (2014), 687–696 | DOI | Zbl
[2] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits. II. Sluchai chetnoi razmernosti”, Mat. zametki, 98 (2015), 76–84 | DOI | Zbl
[3] T. N. E. Greville, “Toeplitz matrices with Toeplitz inverses revisited”, Linear Algebra Appl., 55 (1983), 87–92 | DOI | MR | Zbl
[4] A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “O sobstvennykh znacheniyakh (T+H)-tsirkulyantov i kosykh (T+H)-tsirkulyantov”, Sib. zh. vychisl. mat., 17 (2014), 111–124 | MR | Zbl