Extremal areas of polygons with fixed perimeter
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 136-145

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the configuration space of planar $n$-gons with fixed perimeter, which is diffeomorphic to the complex projective space $\mathbb{C}P^{n-2}$. The oriented area function has the minimum number of critical points on the configuration space. We describe its critical points (these are regular stars) and compute their indices when they are Morse. Bibliography: 11 titles.
@article{ZNSL_2019_481_a9,
     author = {G. Khimshiashvili and G. Panina and D. Siersma},
     title = {Extremal areas of polygons with fixed perimeter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/}
}
TY  - JOUR
AU  - G. Khimshiashvili
AU  - G. Panina
AU  - D. Siersma
TI  - Extremal areas of polygons with fixed perimeter
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 136
EP  - 145
VL  - 481
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/
LA  - en
ID  - ZNSL_2019_481_a9
ER  - 
%0 Journal Article
%A G. Khimshiashvili
%A G. Panina
%A D. Siersma
%T Extremal areas of polygons with fixed perimeter
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 136-145
%V 481
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/
%G en
%F ZNSL_2019_481_a9
G. Khimshiashvili; G. Panina; D. Siersma. Extremal areas of polygons with fixed perimeter. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 136-145. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/