@article{ZNSL_2019_481_a9,
author = {G. Khimshiashvili and G. Panina and D. Siersma},
title = {Extremal areas of polygons with fixed perimeter},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--145},
year = {2019},
volume = {481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/}
}
G. Khimshiashvili; G. Panina; D. Siersma. Extremal areas of polygons with fixed perimeter. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 136-145. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a9/
[1] A. A. Agrachev, D. Pallaschke, S. Scholtes, “On Morse theory for piecewise smooth functions”, J. Dynam. Control Systems, 3:4 (1997), 449–469 | MR | Zbl
[2] V. Blåsjö, “The isoperimetric problem”, Amer. Math. Monthly, 112:6 (2005), 525–566
[3] T. E. Cecil, P. J. Ryan, Tight and Taut Immersions of Manifolds, Pitman, Boston, 1985 | MR | Zbl
[4] F. H. Clarke, “Generalized gradients and applications”, Trans. Amer. Math. Soc., 205 (1975), 247–262 | DOI | MR | Zbl
[5] J. Gordon, G. Panina, Y. Teplitskaya, “Polygons with prescribed edge slopes: configuration space and extremal points of perimeter”, Beitr. Algebra Geom., 60:1 (2019), 1–15 | DOI | MR | Zbl
[6] J. C. Leger, Aire, périmètre et polygones cocycliques, arXiv: 1805.05423
[7] A.-M. Legendre, Éléments de géométrie, 14e edition, Firmin Didot frères, 1841
[8] M. Kapovich, J. Millson, “On the moduli space of polygons in the Euclidean plane”, J. Differential Geom., 42:1 (1995), 133–164 | DOI | MR | Zbl
[9] G. Khimshiashvili, G. Panina, “Cyclic polygons are critical points of area”, Zap. Nauchn. Semin. POMI, 360, 2008, 238–245 | MR
[10] G. Panina, A. Zhukova, “Morse index of a cyclic polygon”, Cent. Eur. J. Math., 9:2 (2011), 364–377 | DOI | MR | Zbl
[11] A. Zhukova, “Morse index of a cyclic polygon II”, St. Petersburg Math. J., 24 (2013), 461–474 | DOI | MR | Zbl