@article{ZNSL_2019_481_a7,
author = {Yu. A. Neretin},
title = {A remark on nilpotent {Lie} algebras that do no admit gradings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--124},
year = {2019},
volume = {481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a7/}
}
Yu. A. Neretin. A remark on nilpotent Lie algebras that do no admit gradings. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 108-124. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a7/
[1] J. H. Ancochea, R. Campoamor, “Characteristically nilpotent Lie algebras: a survey”, Extracta Math., 16:2 (2001), 153–210 | MR | Zbl
[2] E. M. Andreev, V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group”, Funct. Anal. Appl., 5:4 (1971), 265–271 | DOI | MR
[3] R. Bryant, J. Groves, “Algebraic groups of automorphisms of nilpotent groups and Lie algebras”, J. London Math. Soc., 33:2 (1986), 453–456 | DOI | MR
[4] D. Burde, “On a refinement of Ado's theorem”, Arch. Math., 70:2 (1998), 118–127 | DOI | MR | Zbl
[5] D. Burde, B. Eick, W. de Graaf, “Computing faithful representations for nilpotent Lie algebras”, J. Algebra, 322:3 (2009), 602–612 | DOI | MR | Zbl
[6] D. Burde, W. A. Moens, “Faithful Lie algebra modules and quotients of the universal enveloping algebra”, J. Algebra, 325:1 (2011), 440–460 | DOI | MR | Zbl
[7] R. Carles, Varietes d'algèbres de Lie: point de vue global et rigidité, These, Université de Poitiers, 1984
[8] R. Carles, Y. Diakité, “Sur les variétés d'algèbres de Lie de dimension $\le 7$”, J. Algebra, 91 (1984), 53–63 | DOI | MR | Zbl
[9] R. Carles, “Sur certaines classes d'algèbres de Lie rigides”, Math. Ann., 272 (1985), 477–488 | DOI | MR | Zbl
[10] L. J. Corwin, F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, v. I, Basic Theory and Examples, Cambridge Univ. Press, 1990 | MR | Zbl
[11] J. Dixmier, W. G. Lister, “Derivations of nilpotent Lie algebras”, Proc. Amer. Math. Soc., 8 (1957), 155–158 | DOI | MR | Zbl
[12] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, 1986 | MR | Zbl
[13] M. Gerstenhaber, “On the deformations of rings and algebras”, Ann. Math. (2), 79:1 (1964), 59–103 | DOI | MR | Zbl
[14] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funct. Anal. Appl., 7:2 (1973), 91–97 | DOI | MR | Zbl
[15] M.-P. Gong, Classification of nilpotent Lie algebras of dimension $7$ (over algebraically closed fields and $\mathrm{Re}$), PhD thesis, University of Waterloo, 1998 http://etd.uwaterloo.ca/etd/mpgong1998.pdf/ | MR
[16] V. Gorbatsevich, Computational experiments with nilpotent Lie algebra, arXiv: 1609.06493 | MR
[17] K. Gröchenig, D. Rottensteiner, “Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups”, J. Funct. Anal., 275:12 (2018), 3338–3379 | DOI | MR | Zbl
[18] M. Goze, J. M. Ancochea Bermudez, “On the varieties of nilpotent Lie algebras of dimension $7$ and $8$”, J. Pure Appl. Algebra, 77:2 (1992), 131–140 | DOI | MR | Zbl
[19] M. Goze, Yu. Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academic Publishers, Dordrecht, 1996, 334 pp. | MR | Zbl
[20] A. A. Kirillov, “Unitary representations of nilpotent Lie groups”, Russian Math. Surveys, 17:4 (1962), 53–104 | DOI | MR | Zbl
[21] Amer. Math. Soc. Transl., 37, 1987, 21–30 | DOI | MR
[22] Yu. Yu. Kochetkov, “Deformations of the infinite-dimensional Lie algebra $L_3$”, Funct. Anal. Appl., 40:3 (2006), 228–233 | DOI | MR | Zbl
[23] E. M. Luks, “A characteristically nilpotent Lie algebra can be a derived algebra”, Proc. Amer. Math. Soc., 56 (1976), 42–44 | DOI | MR | Zbl
[24] E. M. Luks, What is the typical nilpotent Lie algebra?, Computers in Nonassociative Rings and Algebras, eds. R. E. Beck, B. Kolman, 1977, 189–207 | DOI | MR
[25] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, Reprint of the 1976, second edition, Dover Publications, Mineola, NY, 2004 | MR | Zbl
[26] G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta Math., 27 (1979), 81–101 | DOI | MR | Zbl
[27] G. Mazzola, “Generic finite schemes and Hochschild cocycles”, Comment. Math. Helv., 55 (1980), 267–293 | DOI | MR | Zbl
[28] Amer. Math. Soc. Transl., 1951, no. 39, 1951 | MR
[29] D. V. Millionshchikov, “The variety of Lie algebras of maximal class”, Geometry, Topology, and Mathematical Physics. II, Collected Papers. Dedicated to Academician S. P. Novikov, Proc. Steklov Inst. Math., 266, 2009, 177–194 | DOI | MR | Zbl
[30] W. A. Moens, “Representing Lie algebras using approximations with nilpotent ideals”, J. Lie Theory, 26:1 (2016), 169–179 | MR | Zbl
[31] V. V. Morozov, “Classification of nilpotent Lie algebras of sixth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 4, 161–171 | MR | Zbl
[32] Yu. A. Neretin, “An estimate of the number of parameters defining an $n$-dimensional algebra”, Math. USSR-Izv., 30:2 (1988), 283–294 | DOI | MR | Zbl
[33] Yu. A. Neretin, “A construction of finite-dimensional faithful representation of Lie algebra”, Proceedings of the 22nd Winter School “Geometry and Physics”, Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento, 71, ed. J. Bureš, Circolo Matematico di Palermo, Palermo, 2003, 159–161 | MR | Zbl
[34] G. I. Olshanskii, “On the duality theorem of Frobenius”, Funct. Anal. Appl., 3:4 (1969), 295–302 | DOI | MR
[35] R. W. Richardson, “On the rigidity of semi-direct products of Lie algebras”, Pacific J. Math., 22 (1967), 339–344 | DOI | MR | Zbl
[36] E. N. Safiullina, Classification of nilpotent Lie algebras of order $7$, Ph.D. Thesis, Kazan State University, 1966 | MR
[37] E. N. Safiullina, On a classification of nilpotent Lie algebras of seventh order, Manuscript deposited at VINITI, No 1702-76, Kazan. Khimiko-Tekhnol. Inst., 1976
[38] C. Seeley, “$7$-Dimensional nilpotent Lie algebras”, Trans. Amer. Math. Soc., 335:2 (1993), 479–496 | MR | Zbl
[39] I. R. Shafarevich, “Deformations of commutative algebras of class $2$”, Leningrad Math. J., 2:6 (1991), 1335–1351 | MR
[40] K. A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen, insbesondere der Gruppen von Range Null, Thesis, University of Leipzig, 1891, 80 pp.
[41] M. Vergne, “Réductibilité de la variété des algèbres de Lie niipotentes”, C. R. Acad. Sci. Paris, série A, 263 (1966), 4–6 | MR | Zbl
[42] M. Vergne, “Cohomologie de algebres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116 | DOI | MR | Zbl
[43] E. B. Vinberg, A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups, Nauka, M., 1988 (in Russian) | MR | Zbl