Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 87-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate a PL topology question: which circle bundles can be triangulated over a given triangulation of the base? The question gets a simple answer emphasizing the role of minimal triangulations encoded by local systems of circular permutations of vertices of the base simplices. The answer is based on an experimental fact: the classical Huntington transitivity axiom for cyclic orders can be expressed as the universal binary Chern cocycle.
@article{ZNSL_2019_481_a6,
     author = {N. Mn\"ev},
     title = {Minimal triangulations of circle bundles, circular permutations, and the binary {Chern} cocycle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--107},
     year = {2019},
     volume = {481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/}
}
TY  - JOUR
AU  - N. Mnëv
TI  - Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 87
EP  - 107
VL  - 481
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/
LA  - en
ID  - ZNSL_2019_481_a6
ER  - 
%0 Journal Article
%A N. Mnëv
%T Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 87-107
%V 481
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/
%G en
%F ZNSL_2019_481_a6
N. Mnëv. Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 87-107. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/

[1] J.-L. {Brylinski}, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, Basel, 2008 (reprint of the 1993 edition) | MR | Zbl

[2] S. Chern, “Circle bundles”, Lect. Notes Math., 597, 1977, 114–131 | DOI | MR | Zbl

[3] J. Curry, Sheaves, cosheaves and applications, 2013, arXiv: 1303.3255 | MR

[4] T. Dyckerhoff, M, Kapranov, Crossed simplicial groups and structured surfaces, 2014, arXiv: 1403.5799 | MR

[5] Z. Fiedorowicz, J.-L. Loday, “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., 326:1 (1991), 57–87 | DOI | MR | Zbl

[6] B. L. Feigin, B. L. Tsygan, “Additive $K$-theory”, Lect. Notes Math., 1289, 1987, 670–209 | MR

[7] E. V. Huntington, “A set of independent postulates for cyclic order”, Nat. Acad. Proc., 2 (1916), 630–631 | DOI

[8] E. V. Huntington, “Inter-relations among the four principal types of order”, Trans. Amer. Math. Soc., 38 (1935), 1–9 | DOI | MR

[9] D. N. Kozlov, “Combinatorial algebraic topology”, Eur. Math. Soc. Newslett., 68 (2008), 13–16 | MR | Zbl

[10] R. Krasauskas, “Skew-simplicial groups”, Lithuanian Math. J., 27:1 (1987), 47–54 | DOI | MR | Zbl

[11] N. Mnëv, Which circle bundles can be triangulated over $\partial \Delta^3$?, 1807, arXiv: 1807.06842 | MR

[12] K. V. Madahar, K. S. Sarkaria, “A minimal triangulation of the Hopf map and its application”, Geom. Dedicata, 82:1–3 (2000), 105–114 | DOI | MR | Zbl

[13] N. Mnëv, G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, J. Math. Sci., 224:2 (2017), 304–327 | DOI | MR | Zbl

[14] V. Novak, “Cyclically ordered sets”, Czech. Math. J., 32 (1982), 460–473 | MR | Zbl

[15] C. P. Rourke, B. J. Sanderson, “$\triangle$-sets. I. Homotopy theory”, Quart. J. Math. Oxford Ser. (2), 22 (1971), 321–338 | DOI | MR | Zbl

[16] F. Waldhausen, B. Jahren, J. Rognes, Spaces of PL Manifolds and Categories of Simple Maps, Princeton Univ. Press, 2013 | MR | Zbl