@article{ZNSL_2019_481_a6,
author = {N. Mn\"ev},
title = {Minimal triangulations of circle bundles, circular permutations, and the binary {Chern} cocycle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--107},
year = {2019},
volume = {481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/}
}
N. Mnëv. Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 87-107. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a6/
[1] J.-L. {Brylinski}, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, Basel, 2008 (reprint of the 1993 edition) | MR | Zbl
[2] S. Chern, “Circle bundles”, Lect. Notes Math., 597, 1977, 114–131 | DOI | MR | Zbl
[3] J. Curry, Sheaves, cosheaves and applications, 2013, arXiv: 1303.3255 | MR
[4] T. Dyckerhoff, M, Kapranov, Crossed simplicial groups and structured surfaces, 2014, arXiv: 1403.5799 | MR
[5] Z. Fiedorowicz, J.-L. Loday, “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., 326:1 (1991), 57–87 | DOI | MR | Zbl
[6] B. L. Feigin, B. L. Tsygan, “Additive $K$-theory”, Lect. Notes Math., 1289, 1987, 670–209 | MR
[7] E. V. Huntington, “A set of independent postulates for cyclic order”, Nat. Acad. Proc., 2 (1916), 630–631 | DOI
[8] E. V. Huntington, “Inter-relations among the four principal types of order”, Trans. Amer. Math. Soc., 38 (1935), 1–9 | DOI | MR
[9] D. N. Kozlov, “Combinatorial algebraic topology”, Eur. Math. Soc. Newslett., 68 (2008), 13–16 | MR | Zbl
[10] R. Krasauskas, “Skew-simplicial groups”, Lithuanian Math. J., 27:1 (1987), 47–54 | DOI | MR | Zbl
[11] N. Mnëv, Which circle bundles can be triangulated over $\partial \Delta^3$?, 1807, arXiv: 1807.06842 | MR
[12] K. V. Madahar, K. S. Sarkaria, “A minimal triangulation of the Hopf map and its application”, Geom. Dedicata, 82:1–3 (2000), 105–114 | DOI | MR | Zbl
[13] N. Mnëv, G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, J. Math. Sci., 224:2 (2017), 304–327 | DOI | MR | Zbl
[14] V. Novak, “Cyclically ordered sets”, Czech. Math. J., 32 (1982), 460–473 | MR | Zbl
[15] C. P. Rourke, B. J. Sanderson, “$\triangle$-sets. I. Homotopy theory”, Quart. J. Math. Oxford Ser. (2), 22 (1971), 321–338 | DOI | MR | Zbl
[16] F. Waldhausen, B. Jahren, J. Rognes, Spaces of PL Manifolds and Categories of Simple Maps, Princeton Univ. Press, 2013 | MR | Zbl