@article{ZNSL_2019_481_a5,
author = {A. R. Minabutdinov},
title = {Limiting curves for the dyadic odometer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {74--86},
year = {2019},
volume = {481},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/}
}
A. R. Minabutdinov. Limiting curves for the dyadic odometer. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 74-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/
[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | Zbl
[2] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. semin. LOMI, 115, 1982, 72–82 | Zbl
[3] A. M. Vershik, B. Solomyak, “Adicheskaya realizatsiya preobrazovaniya Morsa i prodolzhenie ego deistviya na solenoid”, Zap. nauchn. semin. POMI, 360, 2008, 70–90 | MR
[4] A. P. Minabutdinov, I. E. Manaev, “Funktsiya Kruskala-Katony, posledovatelnost Konveya, krivaya Takagi i avtomorfizm Paskalya”, Zap. nauchn. semin. POMI, 411, 2013, 135–147
[5] A. A. Lodkin, A. P. Minabutdinov, “Predelnye krivye dlya avtomorfizma Paskalya”, Zap. nauchn. semin. POMI, 437, 2015, 145–183
[6] A. P. Minabutdinov, “Teorema suschestvovaniya predelnykh krivykh dlya polinomialnykh adicheskikh avtomorfizmov”, Zap. nauchn. semin. POMI, 448 (2016), 177–200
[7] S. Bailey, Dynamical properties of some non-stationary, non-simple Bratteli–Vershik systems, Ph.D. thesis, University of North Carolina, Chapel Hill, 2006 | MR
[8] A. Minabutdinov, Limiting curves for the dyadic odometer and the generalized Trollope–Delange formula, 2018, arXiv: 1801.03120 | MR
[9] P. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2012), 1–54 | DOI | MR | Zbl
[10] M. Barnsley, “Fractal functions and interpolation”, Constr. Approx., 2 (1986), 303–329 | DOI | MR | Zbl
[11] H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math., 21:2 (1975), 31–47 | MR | Zbl
[12] R. Girgensohn, “Nowhere differentiable solutions of a system of functional equations”, Aequationes Math., 47:1 (1994), 89–99 | DOI | MR | Zbl
[13] R. Girgensohn, “Digital Sums and functional equations”, Integers, 12:1 (2012), 141–160 | DOI | MR | Zbl
[14] É. Janvresse, T. de la Rue, “The Pascal adic transformation is loosely Bernoulli”, Ann. Inst. H. Poincaré Probab. Statist, 40:2 (2004), 133–139 | DOI | MR | Zbl
[15] É. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl
[16] S. Kakutani, “A problem of equidistribution on the unit interval [0, 1]”, Lect. Notes Math., 541, 1976, 369–375 | DOI | MR | Zbl
[17] J. C. Lagarias, “The Takagi function and its properties”, Functions in Number Theory and Their Probabilistic Aspects, 2012, 153–189 | MR | Zbl
[18] G. Landsberg, “Über die Differentiierbarkeit stetiger Funktionen”, Jahresber. Deutschen Math. Verein., 17 (1908), 46–51 | Zbl
[19] A. Lodkin, A. Minabutdinov, “Limiting curves for the Pascal adic transformation”, J. Math. Sci., 216:1 (2016), 94–119 | DOI | MR | Zbl
[20] X. Méla, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25:1 (2005), 227–256 | DOI | MR | Zbl
[21] A. Minabutdinov, “Limiting curves for polynomial adic systems”, Zap. Nauchn. Semin. POMI, 448, 2016, 177–200
[22] A. Nogueira, E. H. El Abdalaoui, M. El Machkouri, “A criterion of weak mixing property”, École de Théorie Ergodique, Sémin. Congr., 20, Soc. Math. France, Paris, 2010, 105–111 | MR | Zbl
[23] G. de Rham, “Sur quelques courbes définies par des équations fonctionnelles”, Rend. Sem. Mat., 16 (1956), 101–113 | MR
[24] T. Takagi, “A simple example of the continuous function without derivative”, Proc. Phys.-Math. Soc., 1 (1903), 176–177 | Zbl
[25] E. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25 | DOI | MR | Zbl
[26] A. M. Vershik, “Remarks on Pascal automorphism and infinite ergodic theory”, Armenian J. Math., 7:2 (2015), 85–96 | MR | Zbl