Limiting curves for the dyadic odometer
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 74-86
Voir la notice de l'article provenant de la source Math-Net.Ru
A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functions
$$
t\mapsto \big(S(tl_n) - tS(l_n)\big)/R_n \in C([0, 1]),
$$
where $S$ stands for the piecewise linear extension of the partial sum, $R_n := \sup |S(tl_n) - tS(l_n))|$, and $(l_n) = (l_n(\omega))$ is a suitable sequence of integers. We determine the limiting curves for the stationary sequence $(f\circ T^n(\omega))$ where $T$ is the dyadic odometer on $\{0,1\}^{\mathbb{N}}$ and
$$f((\omega_i)) = \sum\limits_{i\geq 0}\omega_iq^{i+1}$$
for $1/2 |q| 1.$ Namely, we prove that for a.e. $\omega$ there exists a sequence $(l_n(\omega))$ such that the limiting curve exists and is equal to $(-1)$ times the Tagaki–Landsberg function with parameter $1/2q.$ The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the $q$-weighted case.
@article{ZNSL_2019_481_a5,
author = {A. R. Minabutdinov},
title = {Limiting curves for the dyadic odometer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {74--86},
publisher = {mathdoc},
volume = {481},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/}
}
A. R. Minabutdinov. Limiting curves for the dyadic odometer. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 74-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/