Limiting curves for the dyadic odometer
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 74-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functions $$ t\mapsto \big(S(tl_n) - tS(l_n)\big)/R_n \in C([0, 1]), $$ where $S$ stands for the piecewise linear extension of the partial sum, $R_n := \sup |S(tl_n) - tS(l_n))|$, and $(l_n) = (l_n(\omega))$ is a suitable sequence of integers. We determine the limiting curves for the stationary sequence $(f\circ T^n(\omega))$ where $T$ is the dyadic odometer on $\{0,1\}^{\mathbb{N}}$ and $$f((\omega_i)) = \sum\limits_{i\geq 0}\omega_iq^{i+1}$$ for $1/2 |q| 1.$ Namely, we prove that for a.e. $\omega$ there exists a sequence $(l_n(\omega))$ such that the limiting curve exists and is equal to $(-1)$ times the Tagaki–Landsberg function with parameter $1/2q.$ The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the $q$-weighted case.
@article{ZNSL_2019_481_a5,
     author = {A. R. Minabutdinov},
     title = {Limiting curves for the dyadic odometer},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
TI  - Limiting curves for the dyadic odometer
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 74
EP  - 86
VL  - 481
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/
LA  - ru
ID  - ZNSL_2019_481_a5
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%T Limiting curves for the dyadic odometer
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 74-86
%V 481
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/
%G ru
%F ZNSL_2019_481_a5
A. R. Minabutdinov. Limiting curves for the dyadic odometer. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 74-86. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a5/