Klein sail and Diophantine approximation of a vector
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 63-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the papers by V. I. Arnold and his successors based upon the ideas of A. Poincaré and F. Klein, it was the Klein sail associated with an operator in $\mathbb R^n$ that they considered to play the role of a multidimensional continued fraction, and in these terms generalizations of the Lagrange theorem on continued fractions were formulated. A different approach to the generalization of the notion of continued fraction was based upon modifications of Euclid's algorithm for constructing, given an irrational vector, an approximating sequence of rational vectors. We suggest a modification of the Klein sail that is constructed directly from a vector, without any operator. A numeric characteristic of a Klein sail, its asymptotic anisotropy associated with a one-parameter transformation semigroup of the lattice that generates the sail, and of its Voronoï cell, is introduced. In terms of this anisotropy, we hope to give a geometric characterization of irrational vectors worst approximated by rational ones. In the three-dimensional space, we suggest a vector (related to the least Pisot–Vijayaraghavan number) that is a candidate for this role. This vector may be called an analog of the golden number, which is the worst approximated real number in the classical theory of Diophantine approximation.
@article{ZNSL_2019_481_a4,
     author = {A. A. Lodkin},
     title = {Klein sail and {Diophantine} approximation of a vector},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--73},
     year = {2019},
     volume = {481},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/}
}
TY  - JOUR
AU  - A. A. Lodkin
TI  - Klein sail and Diophantine approximation of a vector
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 63
EP  - 73
VL  - 481
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/
LA  - ru
ID  - ZNSL_2019_481_a4
ER  - 
%0 Journal Article
%A A. A. Lodkin
%T Klein sail and Diophantine approximation of a vector
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 63-73
%V 481
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/
%G ru
%F ZNSL_2019_481_a4
A. A. Lodkin. Klein sail and Diophantine approximation of a vector. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 63-73. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/

[1] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1961 | MR

[2] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2001

[3] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Trudy MIAN, 209, 1995, 143–166 | MR | Zbl

[4] M. L. Kontsevich. Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | DOI | MR | Zbl

[5] G. Lachaud, Voiles et polyèdres de Klein, Prétirage No 95-22, Laboratoire de Mathématiques Discretes du C.N.R.S, 1995

[6] G. Lachaud, “Sails and Klein polyhedra”, Number Theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl

[7] O. N. Karpenkov, “O triangulyatsiyakh torov, svyazannykh s dvumernymi tsepnymi drobyami kubicheskikh irratsionalnostei”, Funkts. anal. i pril., 38:2 (2004), 28–37 | DOI | MR | Zbl

[8] O. N. German, “Parusa i normennye minimumy reshetok”, Matem. sb., 196:3 (2005), 31–60 | DOI | MR | Zbl

[9] A. J. Brentjes, Multidimensional Continued Fraction Algorithms, Mathematisch Centrum, Amsterdam, 1981 | MR

[10] A. D. Bryuno, V. I. Parusnikov, “Sravnenie raznykh obobschenii tsepnykh drobei”, Mat. zametki, 61:3 (1997), 339–348 | DOI | MR | Zbl

[11] S. M. Blyudze, Optimalnye tsepnye drobi, Diplomnaya rabota, S.-Peterburg, 1998

[12] T. van Ravenstein, “Optimal spacing of points on a circle”, Fibonacci Quart., 27:1 (1989), 18–24 | MR | Zbl

[13] L. S. Levitov, “Phyllotaxis of flux lattices in layered superconductors”, Phys. Rev. Lett., 66:2 (1991), 224–227 | DOI | MR | Zbl

[14] H. W. Lee, L. S. Levitov, “Universality in phyllotaxis: a mechanical theory”, Symmetry in Plants, World Scientific, Singapore, 1998, 619–653 | DOI

[15] A. A. Lodkin, “Matematicheskoe modelirovanie fillotaksisa”, V Vsesoyuznaya shkola po teoreticheskoi morfologii rastenii (Lvov, 1987), 59–65

[16] P. Atela, C. Golé, S. Hotton, “A dynamical system for plant pattern formation: a rigorous analysis”, J. Nonlinear Sci., 12:6 (2002), 1–39 | MR

[17] A. A. Lodkin, Parus Kleina i diofantovy priblizheniya vektora, Preprint SPbMO No 2018-07, 2018

[18] F. Bergeron, C. Reutenauer, “Golden ratio and phyllotaxis, a clear mathematical link”, J. Math. Biology, 78:1-2 (2019), 1–19 | DOI | MR | Zbl