@article{ZNSL_2019_481_a4,
author = {A. A. Lodkin},
title = {Klein sail and {Diophantine} approximation of a vector},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--73},
year = {2019},
volume = {481},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/}
}
A. A. Lodkin. Klein sail and Diophantine approximation of a vector. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 63-73. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a4/
[1] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1961 | MR
[2] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2001
[3] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Trudy MIAN, 209, 1995, 143–166 | MR | Zbl
[4] M. L. Kontsevich. Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | DOI | MR | Zbl
[5] G. Lachaud, Voiles et polyèdres de Klein, Prétirage No 95-22, Laboratoire de Mathématiques Discretes du C.N.R.S, 1995
[6] G. Lachaud, “Sails and Klein polyhedra”, Number Theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl
[7] O. N. Karpenkov, “O triangulyatsiyakh torov, svyazannykh s dvumernymi tsepnymi drobyami kubicheskikh irratsionalnostei”, Funkts. anal. i pril., 38:2 (2004), 28–37 | DOI | MR | Zbl
[8] O. N. German, “Parusa i normennye minimumy reshetok”, Matem. sb., 196:3 (2005), 31–60 | DOI | MR | Zbl
[9] A. J. Brentjes, Multidimensional Continued Fraction Algorithms, Mathematisch Centrum, Amsterdam, 1981 | MR
[10] A. D. Bryuno, V. I. Parusnikov, “Sravnenie raznykh obobschenii tsepnykh drobei”, Mat. zametki, 61:3 (1997), 339–348 | DOI | MR | Zbl
[11] S. M. Blyudze, Optimalnye tsepnye drobi, Diplomnaya rabota, S.-Peterburg, 1998
[12] T. van Ravenstein, “Optimal spacing of points on a circle”, Fibonacci Quart., 27:1 (1989), 18–24 | MR | Zbl
[13] L. S. Levitov, “Phyllotaxis of flux lattices in layered superconductors”, Phys. Rev. Lett., 66:2 (1991), 224–227 | DOI | MR | Zbl
[14] H. W. Lee, L. S. Levitov, “Universality in phyllotaxis: a mechanical theory”, Symmetry in Plants, World Scientific, Singapore, 1998, 619–653 | DOI
[15] A. A. Lodkin, “Matematicheskoe modelirovanie fillotaksisa”, V Vsesoyuznaya shkola po teoreticheskoi morfologii rastenii (Lvov, 1987), 59–65
[16] P. Atela, C. Golé, S. Hotton, “A dynamical system for plant pattern formation: a rigorous analysis”, J. Nonlinear Sci., 12:6 (2002), 1–39 | MR
[17] A. A. Lodkin, Parus Kleina i diofantovy priblizheniya vektora, Preprint SPbMO No 2018-07, 2018
[18] F. Bergeron, C. Reutenauer, “Golden ratio and phyllotaxis, a clear mathematical link”, J. Math. Biology, 78:1-2 (2019), 1–19 | DOI | MR | Zbl