Enumeration of paths in the Young--Fibonacci graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 39-62

Voir la notice de l'article provenant de la source Math-Net.Ru

The Young–Fibonacci graph is the Hasse diagram of one of the two (along with the Young lattice) 1-differential graded modular lattices. This explains the interest to path enumeration problems in this graph. We obtain a formula for the number of paths between two vertices of the Young–Fibonacci graph which is polynomial with respect to the minimum of their ranks.
@article{ZNSL_2019_481_a3,
     author = {V. Yu. Evtushevsky},
     title = {Enumeration of paths in the {Young--Fibonacci} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--62},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/}
}
TY  - JOUR
AU  - V. Yu. Evtushevsky
TI  - Enumeration of paths in the Young--Fibonacci graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 39
EP  - 62
VL  - 481
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/
LA  - ru
ID  - ZNSL_2019_481_a3
ER  - 
%0 Journal Article
%A V. Yu. Evtushevsky
%T Enumeration of paths in the Young--Fibonacci graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 39-62
%V 481
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/
%G ru
%F ZNSL_2019_481_a3
V. Yu. Evtushevsky. Enumeration of paths in the Young--Fibonacci graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 39-62. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/