Enumeration of paths in the Young–Fibonacci graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 39-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Young–Fibonacci graph is the Hasse diagram of one of the two (along with the Young lattice) 1-differential graded modular lattices. This explains the interest to path enumeration problems in this graph. We obtain a formula for the number of paths between two vertices of the Young–Fibonacci graph which is polynomial with respect to the minimum of their ranks.
@article{ZNSL_2019_481_a3,
     author = {V. Yu. Evtushevsky},
     title = {Enumeration of paths in the {Young{\textendash}Fibonacci} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--62},
     year = {2019},
     volume = {481},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/}
}
TY  - JOUR
AU  - V. Yu. Evtushevsky
TI  - Enumeration of paths in the Young–Fibonacci graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 39
EP  - 62
VL  - 481
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/
LA  - ru
ID  - ZNSL_2019_481_a3
ER  - 
%0 Journal Article
%A V. Yu. Evtushevsky
%T Enumeration of paths in the Young–Fibonacci graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 39-62
%V 481
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/
%G ru
%F ZNSL_2019_481_a3
V. Yu. Evtushevsky. Enumeration of paths in the Young–Fibonacci graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 39-62. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a3/

[1] A. M. Vershik, “Asymptotic theory of path spaces of graded graphs and its applications”, Japan. J. Math., 11:2 (2016), 151–218 | DOI | MR | Zbl

[2] F. M. Goodman, S. V. Kerov, “The Martin boundary of the Young–Fibonacci lattice”, J. Algebraic Combin., 11:1 (2000), 17–48 | DOI | MR | Zbl

[3] S. Okada, “Algebras associated to the Young–Fibonacci lattice”, Trans. Amer. Math. Soc., 346 (1994), 549–568 | DOI | MR | Zbl

[4] W. Feit, “The degree formula for the skew-representations of the symmetric group”, Proc. Amer. Math. Soc., 4 (1953), 740–744 | DOI | MR | Zbl

[5] S. V. Fomin, “Obobschennoe sootvetstvie Robinsona–Shensteda–Knuta”, Zap. nauchn. semin. LOMI, 155, 1986, 156–175 | Zbl

[6] S. Fomin, “Duality of graded graphs”, J. Algebraic Combin., 3 (1994), 357–404 | DOI | MR | Zbl

[7] R. P. Stanley, “Differential posets”, J. Amer. Math. Soc., 1 (1988), 919–961 | DOI | MR | Zbl