@article{ZNSL_2019_481_a2,
author = {A. M. Vershik and N. V. Tsilevich},
title = {Groups generated by involutions of diamond-shaped graphs, and deformations of {Young's} orthogonal form},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {29--38},
year = {2019},
volume = {481},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a2/}
}
TY - JOUR AU - A. M. Vershik AU - N. V. Tsilevich TI - Groups generated by involutions of diamond-shaped graphs, and deformations of Young's orthogonal form JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 29 EP - 38 VL - 481 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a2/ LA - ru ID - ZNSL_2019_481_a2 ER -
A. M. Vershik; N. V. Tsilevich. Groups generated by involutions of diamond-shaped graphs, and deformations of Young's orthogonal form. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 29-38. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a2/
[1] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR
[2] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, 1996 | MR | Zbl
[3] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, 1981 | MR | Zbl
[4] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Application in Analysis, Amer. Math. Soc., Providence, RI, 2003 | MR
[5] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., New Series, 2:4 (1996), 581–605 | DOI | MR | Zbl
[6] R. Stenli, Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990
[7] A. M. Vershik, “Avtomorfizm Paskalya imeet nepreryvnyi spektr”, Funkts. analiz i ego pril., 45:3 (2011), 16–33 | DOI | MR | Zbl
[8] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 26, 1985, 3–56 | Zbl
[9] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, 1990, 39–117 | MR