@article{ZNSL_2019_481_a1,
author = {A. M. Vershik},
title = {The problem of combinatorial encoding of a continuous dynamics and the notion of transfer of paths in graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--28},
year = {2019},
volume = {481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a1/}
}
TY - JOUR AU - A. M. Vershik TI - The problem of combinatorial encoding of a continuous dynamics and the notion of transfer of paths in graphs JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 12 EP - 28 VL - 481 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a1/ LA - en ID - ZNSL_2019_481_a1 ER -
A. M. Vershik. The problem of combinatorial encoding of a continuous dynamics and the notion of transfer of paths in graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 12-28. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a1/
[1] E. Glasner, B. Weiss, “The universal minimal system for the group of homeomorphisms of the Cantor set”, Fund. Math., 176 (2003), 277–289 | DOI | MR | Zbl
[2] S. Kerov, A. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Alg. Discr. Methods, 7:1 (1986), 14–123 | DOI | MR
[3] D. Romik, P. Sniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[4] P. Sniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl
[5] R. Stanley, Enumerative Combinatorics, v. 2, Cambridge Univ. Press, 1999 | MR
[6] A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333 | DOI | MR | Zbl
[7] A. M. Vershik, “The asymptotics of the partition of the cube into Weyl simplices, and an encoding of a Bernoulli scheme”, Funct. Anal. Appl., 53:2 (2019), 8–29 | DOI | MR
[8] A. M. Vershik, “Three theorems on the uniqueness of a Plancherel measure from different viewpoints”, Tr. Mat. Inst. Steklova, 305, 2019, 71–85 | MR | Zbl