Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 5-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we solve the question, posed by A. M. Vershik, about the asymptotic behavior of the entropies of a given sequence of partitions of the infinite-dimensional cube satisfying the invariance and exhaustibility properties. On the one hand, it is proved that the entropy sequence  increases faster than a linear function. On the other hand, we construct a series of examples that show that the estimate is sharp: for any given sequence increasing faster than a linear function, the entropy of a sequence of partitions can increase slower than the given sequence.
			
            
            
            
          
        
      @article{ZNSL_2019_481_a0,
     author = {G. A. Veprev},
     title = {Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/}
}
                      
                      
                    TY - JOUR AU - G. A. Veprev TI - Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 5 EP - 11 VL - 481 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/ LA - ru ID - ZNSL_2019_481_a0 ER -
%0 Journal Article %A G. A. Veprev %T Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube %J Zapiski Nauchnykh Seminarov POMI %D 2019 %P 5-11 %V 481 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/ %G ru %F ZNSL_2019_481_a0
G. A. Veprev. Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/