Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we solve the question, posed by A. M. Vershik, about the asymptotic behavior of the entropies of a given sequence of partitions of the infinite-dimensional cube satisfying the invariance and exhaustibility properties. On the one hand, it is proved that the entropy sequence increases faster than a linear function. On the other hand, we construct a series of examples that show that the estimate is sharp: for any given sequence increasing faster than a linear function, the entropy of a sequence of partitions can increase slower than the given sequence.
@article{ZNSL_2019_481_a0,
author = {G. A. Veprev},
title = {Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--11},
year = {2019},
volume = {481},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/}
}
TY - JOUR AU - G. A. Veprev TI - Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 5 EP - 11 VL - 481 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/ LA - ru ID - ZNSL_2019_481_a0 ER -
G. A. Veprev. Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a0/