Nearly invariant subspaces and rational interpolation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 148-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Given an inner function $\theta$ in the upper half-plane, consider the subspace $H^2\ominus\theta H^2$ of the Hardy space $H^2$. For a finite collection $\Lambda$ of points on the complex plane, the subspace of functions from $K_\theta$ that vanish on $\Lambda$ can be represented in the form $g\cdot K_\omega$, where $\omega$ is an inner function and $g$ is an isometric multiplier on $K_\omega$. We obtain a description of the functions $\omega$ and $g$ in terms of $\theta$ and $\Lambda$.
@article{ZNSL_2019_480_a9,
     author = {V. V. Kapustin},
     title = {Nearly invariant subspaces and rational interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--161},
     year = {2019},
     volume = {480},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a9/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Nearly invariant subspaces and rational interpolation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 148
EP  - 161
VL  - 480
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a9/
LA  - ru
ID  - ZNSL_2019_480_a9
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Nearly invariant subspaces and rational interpolation
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 148-161
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a9/
%G ru
%F ZNSL_2019_480_a9
V. V. Kapustin. Nearly invariant subspaces and rational interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 148-161. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a9/

[1] V. V. Kapustin, “Yadra operatorov Teplitsa i ratsionalnaya interpolyatsiya”, Zap. nauchn. sem. POMI, 467, 2018, 85–107

[2] D. Hitt, “Invariant subspaces of $\mathcal H^2$ of an annulus”, Pacific J. Math., 134:1 (1988), 101–120 | DOI | MR | Zbl

[3] N. Makarov, A. Poltoratski, “Meromorphic inner functions, Toeplitz kernels and the uncertainty principle”, Perspectives in analysis, Math. Phys. Stud., 27, Springer, Berlin, 2005, 185–252 | DOI | MR | Zbl

[4] P. R. Ahern, D. N. Clark, “Radial limits and invariant subspaces”, Amer. J. Math., 92 (1970), 332–342 | DOI | MR | Zbl

[5] D. N. Clark, “One dimensional perturbations of restricted shifts”, J. Anal. Math., 25:1 (1972), 169–191 | DOI | MR | Zbl

[6] A. C. Antoulas, “Rational interpolation problem and the Euclidean algorithm”, Linear Algebra Appl., 108 (1988), 157–171 | DOI | MR | Zbl