Estimates of approximation by Kantorovich type operators in terms of the second modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 122-147
Cet article a éte moissonné depuis la source Math-Net.Ru
Approximation of bounded measurable functions on the segment $[0, 1]$ by Kantorovich type operators $$ B_n=\sum_{j=0}^nC_n^jx^j(1-x)^{n-j}F_{n, j}, $$ where the $F_{n, j}$ are functionals produced by probability measures with sufficiently small supports is considered. The error of approximation is estimated in terms of the second modulus of continuity. The result is sharp.
@article{ZNSL_2019_480_a8,
author = {L. N. Ikhsanov},
title = {Estimates of approximation by {Kantorovich} type operators in terms of the second modulus of continuity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--147},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a8/}
}
TY - JOUR AU - L. N. Ikhsanov TI - Estimates of approximation by Kantorovich type operators in terms of the second modulus of continuity JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 122 EP - 147 VL - 480 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a8/ LA - ru ID - ZNSL_2019_480_a8 ER -
L. N. Ikhsanov. Estimates of approximation by Kantorovich type operators in terms of the second modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 122-147. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a8/