@article{ZNSL_2019_480_a7,
author = {I. K. Zlotnikov and S. V. Kislyakov},
title = {Grothendieck theorem for some uniform algebras and modules over them},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--121},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a7/}
}
I. K. Zlotnikov; S. V. Kislyakov. Grothendieck theorem for some uniform algebras and modules over them. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 108-121. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a7/
[1] S. V. Kislyakov, “Absolyutno summiruyuschie operatory na disk-algebre”, Algebra i analiz, 3:4, 1–77 | MR
[2] J. Lindenstrauss, A. Pełczyński, “Absolutely summing operators in $L_p$-spaces and their applications”, Studia Math., 29 (1968), 275–326 | DOI | MR | Zbl
[3] J. Bourgain, “New-Banach space properties of the disc algebra and $H^\infty$”, Acta Math., 152 (1984), 1–46 | DOI | MR
[4] F. Lancien, Géométrie des espaces de Banach dans certains espaces de Hardy abstraits, Thèse de doctorat en mathématiques, Université Paris 6, 1993 | Zbl
[5] F. Lancien, “Generalization of Bourgain's theorem about $L^1/H^1$ for weak*-Dirichlet algebras”, Houston J. Math., 20:1 (1994), 47–61 | MR | Zbl
[6] S. V. Kislyakov, I. K. Zlotnikov, “Interpolation for intersections of Hardy-type spaces”, Israel J. Math. (to appear)
[7] W. B. Johnson, J. Lindenstrauss, “Basic concepts in the geometry of Banach spaces”, Handbook of the geometry of Banach spaces, v. 1, Elsevier, 2001, 1–84 | MR | Zbl