Analogs of the Riesz identity, and sharp inequalities for derivatives and differences of splines in the integral metric
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 86-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An analog of the Riesz interpolation formula is established. It allows us to obtain a sharp estimate for the first order derivative of a spline of minimal defect with equidistant knots $\frac{j\pi}{\sigma}$, $j\in\Bbb Z$, in terms of the first order difference in the integral metric. Moreover, the constructed identity makes it possible to strengthen the inequality by replacing its right-hand side with a linear combination of differences, including higher order differences, of the spline. In the case of the difference step $\frac{\pi}{\sigma}$, iterations of this identity lead to formulas analogous to the Riesz formula for higher order derivatives and differences, which allows us to obtain Riesz and Bernstein type inequalities for them, also in a stronger form.
@article{ZNSL_2019_480_a5,
     author = {O. L. Vinogradov},
     title = {Analogs of the {Riesz} identity, and sharp inequalities for derivatives and differences of splines in the integral metric},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--102},
     year = {2019},
     volume = {480},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a5/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Analogs of the Riesz identity, and sharp inequalities for derivatives and differences of splines in the integral metric
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 86
EP  - 102
VL  - 480
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a5/
LA  - ru
ID  - ZNSL_2019_480_a5
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Analogs of the Riesz identity, and sharp inequalities for derivatives and differences of splines in the integral metric
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 86-102
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a5/
%G ru
%F ZNSL_2019_480_a5
O. L. Vinogradov. Analogs of the Riesz identity, and sharp inequalities for derivatives and differences of splines in the integral metric. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 86-102. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a5/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[2] O. L. Vinogradov, “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sibirskii matematicheskii zhurnal, 48:3 (2007), 538–555 | MR | Zbl

[3] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Trudy MIAN SSSR, 78, 1965, 24–42 | Zbl

[4] Yu. N. Subbotin, “Priblizhenie “splain”-funktsiyami i otsenki poperechnikov”, Trudy MIAN SSSR, 109, 1971, 35–60 | Zbl

[5] Yu. N. Subbotin, “Poperechnik klassa $W^rL$ v $L(0,2\pi)$ i priblizhenie splain-funktsiyami”, Matematicheskie zametki, 7:1 (1970), 43–52 | MR

[6] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR

[7] P. D. Litvinets, V. A. Filshtinskii, “Ob odnoi teoreme sravneniya i ee primeneniyakh”, Teoriya priblizheniya funktsii i ee prilozheniya, In-t matematiki AN USSR, Kiev, 1984, 97–107 | MR

[8] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[9] O. L. Vinogradov, “Analogi tozhdestva Rissa i tochnye neravenstva dlya proizvodnykh i raznostei splainov v ravnomernoi metrike”, Problemy matematicheskogo analiza, 97 (2019), 31–42 | Zbl

[10] Y. Domar, “An extremal problem related to Kolmogoroff's inequality for bounded functions”, Arkiv för matematik, 7:30 (1968), 433–441 | DOI | MR | Zbl

[11] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd. LGU, L., 1982