An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 73-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a functional Hilbert space $H$ on a set $X$ with reproducing kernel $k_x(y)$, define the distance between a point $a$, $a\in X$, and a subset $Z$, $Z\subset X$, as follows: $$ d(a,Z)=\inf\left\{\Big\|\frac{k_a}{\|k_a\|}-h\Big\|\biggm | h\in \overline{\mathrm{span}}\big\{k_z | z\in Z\big\} \right\} . $$ A function $\psi_{a,Z}$ is called an extremal multiplier of $H$ if $\|\psi_{a,Z}\|\leq 1$, $\psi_{a,Z}(a)=d(a,Z)$, $\psi_{a,Z}(z)=0$, $z\in Z$. A space $H$ has the Schwarz–Pick kernel if for every pair $(a,Z)$ there exists an extremal multiplier. This definition generalizes the well-known concept of a Nevanlinna–Pick kernel. For a space $H$ with Schwarz–Pick kernel, an inequality for the function $d(a,Z)$ is proved. This inequality generalizes the strong triangle inequality for the metric $d(a,b)$. For a sequence of subsets $\{Z_n\}_{n=1}^\infty$, $Z_n\subset X$, such that $\sum\limits_{n=1}^\infty\left(1-d^2(a,Z_n)\right)<\infty$, it is shown that an infinite product of extremal multipliers $\psi_{a,Z_n}$ converges uniformly and absolutely on any ball with radius strictly less than one in the metric $d$, and also converges in the strong operator topology of the multiplier space.
@article{ZNSL_2019_480_a4,
     author = {I. V. Videnskii},
     title = {An infinite product of extremal multipliers of a {Hilbert} space with {Schwarz{\textendash}Pick} kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--85},
     year = {2019},
     volume = {480},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a4/}
}
TY  - JOUR
AU  - I. V. Videnskii
TI  - An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 73
EP  - 85
VL  - 480
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a4/
LA  - ru
ID  - ZNSL_2019_480_a4
ER  - 
%0 Journal Article
%A I. V. Videnskii
%T An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 73-85
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a4/
%G ru
%F ZNSL_2019_480_a4
I. V. Videnskii. An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 73-85. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a4/

[1] J. Agler, J. E. McCarthy, “Complete Nevanlinna–Pick kernels”, J. Funct. Anal., 175:1 (2000), 111–124 | DOI | MR | Zbl

[2] J. Agler, J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, 44, Amer. Math. Soc., Providence RI, 2002 | DOI | MR | Zbl

[3] D. E. Marshall, C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, , 1993 http://www.math.washington.edu/m̃arshall/preprints/preprints.html/ | MR

[4] I. V. Videnskii, “Ob analoge proizvedeniya Blyashke dlya gilbertova prostranstva s yadrom Nevanlinny–Pika”, Zap. nauchn. semin. POMI, 424, 2014, 126–140

[5] I. V. Videnskii, “Proizvedeniya Blyashke dlya gilbertova prostranstva s yadrom Shvartsa–Pika”, Zap. nauchn. semin. POMI, 434, 2015, 68–81

[6] I. V. Videnskii, “Analog giperbolicheskoi metriki, porozhdennoi gilbertovym prostranstvom s yadrom Shvartsa–Pika”, Zap. nauchn. semin. POMI, 447, 2016, 20–32

[7] B. V. Shabat, Vvedenie v kompleksnyi analiz, Nauka, M., 1969