Voir la notice du chapitre de livre
@article{ZNSL_2019_480_a3,
author = {E. V. Borovik and K. Yu. Fedorovskiy},
title = {On the $\mathrm{Lip}(\omega)$-continuity of the operator of harmonic reflection over boundaries of simple {Carath\'eodory} domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {62--72},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a3/}
}
TY - JOUR
AU - E. V. Borovik
AU - K. Yu. Fedorovskiy
TI - On the $\mathrm{Lip}(\omega)$-continuity of the operator of harmonic reflection over boundaries of simple Carathéodory domains
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2019
SP - 62
EP - 72
VL - 480
UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a3/
LA - ru
ID - ZNSL_2019_480_a3
ER -
%0 Journal Article
%A E. V. Borovik
%A K. Yu. Fedorovskiy
%T On the $\mathrm{Lip}(\omega)$-continuity of the operator of harmonic reflection over boundaries of simple Carathéodory domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 62-72
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a3/
%G ru
%F ZNSL_2019_480_a3
E. V. Borovik; K. Yu. Fedorovskiy. On the $\mathrm{Lip}(\omega)$-continuity of the operator of harmonic reflection over boundaries of simple Carathéodory domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 62-72. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a3/
[1] P. V. Paramonov, “O $\mathrm{Lip}^m$- i $C^m$-otrazhenii garmonicheskikh funktsii otnositelno granits oblastei Karateodori v $\mathbb R^2$”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2018, no. 4, 36–45 | MR
[2] K. Fedorovskiy, P. Paramonov, “On $\mathrm{Lip}^m$-reflection of harmonic functions over boundaries of simple Caratheodory domains”, Anal. Math. Phys., 2019 | DOI | MR
[3] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. di Palermo, 29 (1907), 371–402 | DOI
[4] D. H. Armitage, “Reflection principles for harmonic and polyharmonic functions”, J. Math. Anal. Appl., 65 (1978), 44–55 | DOI | MR | Zbl
[5] D. Khavinson, H. S. Shapiro, “Remarks on the reflection principle for harmonic functions”, J. Anal. Math., 54 (1990), 60–76 | DOI | MR | Zbl
[6] D. Khavinson, “On reflection of harmonic functions in surfaces of revolution”, Complex Var. Theory Appl., 17 (1991), 7–14 | MR | Zbl
[7] P. Ebenfelt, D. Khavinson, “On point-to-point reflection of harmonic functions across real-analytic hypersurfaces in $\mathbb R^n$”, J. Anal. Math., 68 (1996), 145–182 | DOI | MR | Zbl
[8] S. J. Gardiner, H. Render, “A reflection result for harmonic functions which vanish on a cylindrical surface”, J. Math. Anal. Appl., 443:1 (2016), 81–91 | DOI | MR | Zbl
[9] P. V. Paramonov, “O $C^1$-prodolzhenii i $C^1$-otrazhenii subgarmonicheskikh funktsii s oblastei Lyapunova–Dini na $\mathbb R^N$”, Matem sb., 199:12 (2008), 79–116 | DOI | Zbl
[10] E. H. Johnston, “The boundary modulus of continuity of harmonic functions”, Pacific J. Math., 90:1 (1980), 87–98 | DOI | MR | Zbl
[11] L. A. Rubel, A. L. Shields, B. A. Taylor, “Mergelyan sets and the modulus of continuity of analytic functions”, J. Approx. Theor., 15 (1975), 23–40 | DOI | MR | Zbl
[12] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Second Edition, Springer-Verlag, New York, 2000 | MR
[13] A. Beurling, Études sur un Problème de Majoration, Almquist and Wiksell, Upsala, 1933 | Zbl