@article{ZNSL_2019_480_a2,
author = {P. A. Andrianov},
title = {Sufficient conditions for a multidimensional system of periodic wavelets to be a frame},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--61},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a2/}
}
P. A. Andrianov. Sufficient conditions for a multidimensional system of periodic wavelets to be a frame. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 48-61. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a2/
[1] C. K. Chui, J. Z. Wang, “A general framework of compact supported splines and wavelets”, J. Approx. Theory, 71 (1992), 263–304 | DOI | MR | Zbl
[2] S. S. Gon, S. Z. Lee, Z. Shen, W. S. Tang, “Construction of Schauder decomposition on Banach spaces of periodic functions”, Proceedings of the Edinburgh Mathematical Society, 41:1 (1998), 61–91 | DOI | MR
[3] A. P. Petukhov, “Periodic wavelets”, Mat. Sb., 188:10 (1997), 69–94 | DOI | MR | Zbl
[4] V. A. Zheludev, “Periodic splines and wavelets”, Proc. of the Conference “Math. Analysis and Signal Processing” (Cairo, Jan. 2–9, 1994) | MR
[5] B. Han, “On dual wavelet tight frames”, ACHA, 4 (1997), 380–413 | MR | Zbl
[6] I. Daubechies, B. Han, A. Ron, Z. Shen, “Framelets: MRA-based constructions of wavelet frames”, ACHA, 14:1 (2003), 1–46 | MR | Zbl
[7] B. Han, “Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix”, J. Comput. Appl. Math., 155 (2003), 43–67 | DOI | MR | Zbl
[8] M. Skopina, “Wavelet approximation of periodic functions”, J. Approx. Theory, 104:2 (2000), 302–329 | DOI | MR | Zbl
[9] M. A. Skopina, “Local convergence of Fourier series with respect to periodized wavelets”, J. Approx. Theory, 94:2 (1998), 191–202 | DOI | MR | Zbl
[10] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Springer Singapore, 2016, 182 pp. | MR | Zbl
[11] A. Ron, Z. Shen, “Gramian analysis of affine bases and affine frames”, Approximation Theory VIII, v. 2, Wavelets, eds. C.K. Chui, L. Schumaker, World Scientific Publishing Co. Inc, Singapore, 1995, 375–382 | MR | Zbl
[12] A. Ron, Z. Shen, “Frame and stable bases for shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Canad. J. Math., 47:5 (1995), 1051–1094 | DOI | MR | Zbl
[13] A. Ron, Z. Shen, “Affine systems in $L_2(\mathbb{R}^d)$: the analysis of the analysis operator”, J. Funct. Anal., 148 (1997), 408–447 | DOI | MR | Zbl
[14] A. Ron, Z. Shen, “Affine systems in $L_2(\mathbb{R}^d)$: dual systems”, J. Fourier Anal. Appl., 3 (1997), 617–637 | DOI | MR
[15] P. Andrianov, “On sufficient frame conditions for periodic wavelet systems”, Intern. J. Wavelets, Multiresolution and Information Processing, 16:1 (2018), 1850002 | DOI | MR | Zbl
[16] N. D. Atreas, “Characterization of dual multiwavelet frames of periodic functions”, Intern. J. Wavelets, Multiresolution and Information Processing, 14:03 (2016), 1650012 | DOI | MR | Zbl
[17] M. Skopina, “Multiresolution analysis of periodic functions”, East J. On Approximations, 3:2 (1997), 203–224 | MR | Zbl
[18] I. Y. Novikov, V. Y. Protasov, M. A. Skopina, Wavelet Theory, American Mathematical Society, 2011 | MR | Zbl
[19] I. Maksimenko, M. Skopina, “Multivariate periodic wavelets”, St. Petersburg Math. J., 15 (2004), 165–190 | DOI | MR | Zbl