Martingale interpretation of weakly cancelling differential operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 191-198
Cet article a éte moissonné depuis la source Math-Net.Ru
We provide martingale analogs of weakly cancelling differential operators and prove a Sobolev-type embedding theorem for these operators in the martingale setting.
@article{ZNSL_2019_480_a12,
author = {D. M. Stolyarov},
title = {Martingale interpretation of weakly cancelling differential operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--198},
year = {2019},
volume = {480},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a12/}
}
D. M. Stolyarov. Martingale interpretation of weakly cancelling differential operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 191-198. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a12/
[1] R. Ayuosh, D. Stolyarov, M. Wojciechowski, Martingale approach to Sobolev embedding theorems, arXiv: 1811.08137
[2] S. Janson, “Characterizations of $H^1$ by singular integral transforms on martingales and $R^n$”, Math. Scand., 41 (1977), 140–152 | DOI | MR | Zbl
[3] B. Raita, “Critical differentiability of $\mathrm{BV}^{\mathbb{A}}$-maps and cancelling operators”, Trans. Amer. Math. Soc. (to appear) | MR
[4] J. Van Schaftingen, “Limiting Sobolev inequalities for vector fields and canceling linear differential operators”, J. Eur. Math. Soc. (JEMS), 15:3 (2013), 877–921 | DOI | MR | Zbl