Real interpolation of Hardy-type spaces: an announcement with some remarks
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 170-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the couples $(X_A, Y_A)$ of Hardy-type spaces defined for quasi-Banach lattices of measurable functions on $\mathbb T \times \Omega$. Under certain fairly general assumptions, the following conditions are shown to be equivalent: $(X_A, Y_A)$ is $K$-closed in $(X, Y)$, this couple is stable with respect to the real interpolation in the sense that $(X_A, Y_A)_{\theta, p} = (X_A + Y_A) \cap (X, Y)_{\theta, p}$, the inclusion $\left(X^{1 - \theta} Y^\theta\right)_A \subset \left(X_A, Y_A\right)_{\theta, \infty}$ holds true, and the lattices $\left(\mathrm{L}_1, \left(X^r\right)' Y^r\right)_{\delta, q}$ are $\mathrm{BMO}$-regular for some values of the parameters. The last property is weaker than the $\mathrm{BMO}$-regularity of $(X, Y)$, and it requires further study. Some new (compared to the main article) results are given concerning the characterization of this property in terms of the boundedness of the standard harmonic analysis operators such as the Hilbert transform and the Hardy-Littlewood maximal operator.
@article{ZNSL_2019_480_a11,
     author = {D. V. Rutsky},
     title = {Real interpolation of {Hardy-type} spaces: an announcement with some remarks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--190},
     year = {2019},
     volume = {480},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a11/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Real interpolation of Hardy-type spaces: an announcement with some remarks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 170
EP  - 190
VL  - 480
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a11/
LA  - ru
ID  - ZNSL_2019_480_a11
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Real interpolation of Hardy-type spaces: an announcement with some remarks
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 170-190
%V 480
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a11/
%G ru
%F ZNSL_2019_480_a11
D. V. Rutsky. Real interpolation of Hardy-type spaces: an announcement with some remarks. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 47, Tome 480 (2019), pp. 170-190. http://geodesic.mathdoc.fr/item/ZNSL_2019_480_a11/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988 | MR | Zbl

[2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkhäuser/Springer Basel AG, 2013 | MR | Zbl

[3] M. Cwikel, J. E. McCarthy, T. H. Wolff, “Interpolation between weighted Hardy spaces”, Proc. Am. Math. Soc., 116:2 (1992), 381–388 | DOI | MR | Zbl

[4] M. Hazewinkel (ed.), Encyclopaedia of Mathematics, Supplement Volume II, Springer Netherlands, 2000 | MR

[5] S. Janson, “Interpolation of subcouples and quotient couples”, Ark. Mat., 31 (1993), 307–338 | DOI | MR | Zbl

[6] N. J. Kalton, “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[7] S. V. Kisliakov, “Interpolation of $H_p$-spaces: some recent developments”, Israel Math. Conf., 13 (1999), 102–140 | MR | Zbl

[8] S. V. Kisliakov, Quanhua Xu, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Am. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[9] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Stud. Math., 159:2 (2003), 277–289 | DOI | MR

[10] G. Pisier, “Interpolation between $H^p$ spaces and noncommutative generalizations. I”, Pacific J. Math., 155 (1992), 341–368 | DOI | MR | Zbl

[11] D. V. Rutsky, “$A_1$-regularity and boundedness of Calderón-Zygmund operators”, Stud. Math., 221:3 (2014), 231–247 | DOI | MR | Zbl

[12] D. V. Rutsky, “Corrigendum to "$A_1$-regularity and boundedness of Calderón-Zygmund operators" with some remarks”, Stud. Math., 248 (2018), 217–231 | DOI | MR

[13] D. V. Rutsky, Real interpolation of Hardy-type spaces and BMO-regularity, 2018, arXiv: 1811.10128 | Zbl

[14] D. V. Rutskii, “Vektornoznachnaya ogranichennost operatorov garmonicheskogo analiza”, Algebra i analiz, 28:6 (2016), 91–117 | MR

[15] G. P. Kantorovich, L. V. Akilov, Funktsionalnyi analiz, BKhV-Peterburg, 2004

[16] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135

[17] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii. II”, Zap. nauchn. sem. POMI, 303, 2003, 161–168

[18] D. V. Rutskii, “Dva zamechaniya o svyazi BMO-regulyarnosti i analiticheskoi ustoichivosti interpolyatsii dlya reshetok izmerimykh funktsii”, Zap. nauchn. sem. POMI, 366, 2009, 102–115

[19] D. V. Rutskii, “Zamechaniya o BMO-regulyarnosti i AK-ustoichivosti”, Zap. nauchn. sem. POMI, 376, 2010, 116–165

[20] D. V. Rutskii, “BMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i Analiz, 23:2 (2011), 248–295 | MR

[21] D. V. Rutskii, BMO-regulyarnost v reshetkakh izmerimykh funktsii i interpolyatsiya klassov Khardi, dis. k. f.-m. n., POMI RAN, 2011

[22] D. V. Rutskii, “O svyazi mezhdu AK-ustoichivostyu i BMO-regulyarnostyu”, Zap. nauchn. semin. POMI, 416, 2013, 175–187

[23] D. V. Rutskii, “$A_1$-regulyarnost i ogranichennost preobrazovanii Rissa v banakhovykh reshetkakh izmerimykh funktsii”, Zap. nauchn. semin. POMI, 447, 2016, 113–122